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1. Introduction 

1.1 Context and Motivation 

For over two millennia, geometry has been grounded in the continuous logic of classical mathematics. 
Shapes were described through internal parameters such as radius, diameter, and height, and calculated 
through formulas built on constants like π and √. This approach has proven essential in physics, 
architecture, astronomy, and the broader evolution of mathematical thought. Yet, in the present digital 
age, an age of pixels, data grids, and computation, a silent shift is taking place. Modern systems 
increasingly perceive the world not through curves and continuity, but through discrete structures: pixels, 
voxels, bounding boxes, and quantized fields of data.  
Whether analyzing a medical scan, interpreting an image through artificial intelligence, or rendering a 
shape in a CAD model, digital environments rely on rasterized or vectorized approximations. In these 
contexts, traditional geometry often requires transformation, estimation, or approximation before it can be 
applied. This new landscape presents a challenge and an opportunity. Rather than discarding classical 
geometry, we may ask: what kind of geometric paradigm aligns natively with the logic of digital systems? 
What model speaks the language of visual structure, fixed ratios, and computable identity? The Geometric 
Ratio Model (GRM) offers such a paradigm. 
 

1.2 Problem Definition in Digital Geometry 

Despite the power of classical geometry, its foundational elements often conflict with the nature of digital 
computation. The reliance on irrational constants, particularly π, means that every application must 
involve approximation, floating-point arithmetic, and sometimes lossy conversions. Even a simple circle 
must be reinterpreted in raster space, reconstructed through fitted curves or pixel outlines, and validated 
through thresholds or estimators. 
Furthermore, classical methods depend on internal, often invisible, parameters. A radius must be 
measured or assumed. A surface area must be derived from inferred dimensions. These internal properties 
do not map cleanly to how digital systems perceive shapes: as occupancy patterns, discrete outlines, and 
bounded containers. Without an alternative or complementary logic, systems are forced to translate 
between analog geometry and digital representation, often at the expense of interpretability, efficiency, and 
robustness. 
 

1.3 Purpose of this Paper 

This paper proposes that the GRM, by expressing geometry as ratios relative to a square or cube, offers a 
rational, scalable, and visually grounded alternative for digital systems. The GRM is not intended to 
replace classical geometry, nor to discard the value of π-based reasoning. Rather, it introduces a parallel 
framework in which geometric identity is defined by external structure, fixed proportion, and 
dimensionless logic. 
Within this framework: 

• A circle is defined not by its radius, but by the fact that it occupies exactly 0.7854 of the area of 
the square that bounds it. 

• A sphere occupies 0.5236 of the volume of its cube. 

• A regular hexagon fits with a proportional identity of 0.8660, and so forth. 
These values, rational and repeatable, offer a new metric language, one that is computable, interpretable, 
and natively suited to visual environments. This paper formalizes that language. 
 

1.4 Positioning the GRM: Complementary, Not Competitive 

GRM is not a rejection of classical geometry. On the contrary: it draws upon classical results to define its 
ratios, borrows its reference forms (circles, spheres, triangles, hexagons), and assumes familiarity with 
foundational geometric knowledge. What GRM offers is a reformulation, a structural reinterpretation of 



© 2025 M.C.M. van Kroonenburgh, MSc. This model may be used, shared, and cited for educational and non-commercial purposes with 

proper attribution. Commercial use, reproduction, or modification requires prior written permission from the author.    Version 1.1  5 
 

geometry in contexts where internal parameters are inaccessible, and where visual structure takes 
precedence. This is especially relevant in: 

• Artificial Intelligence, where classification depends on pixel ratios rather than precise 
dimensions. 

• Digital Design, where layout and alignment are constrained by grids and resolution. 

• Education, where proportional reasoning supports intuitive understanding. 

• Simulation and CAD, where real-time, low-overhead computation is essential. 
In these domains, GRM becomes not a replacement for π, but a framework that makes π unnecessary, 
because proportional identity, not curved derivation, becomes the primary logic of shape. 
 

1.4.1 Clarifying the Role of π and Approximation 

It is important to note that the rationale behind the Geometric Ratio Model is not based on the 
irrationality of π, nor on concerns about rounding errors or computational difficulty. Digital systems can 
approximate π, √2, and similar constants with extraordinary precision. Likewise, GRM values such as 
0.7854 (π/4) are themselves rounded decimals. The distinction lies elsewhere. GRM does not seek a more 
accurate approximation, but a different frame of reference.  
In classical geometry, the identity of a shape is inferred from internal parameters and analytical formulas. 
In GRM, that identity is derived from external proportional occupation within a bounded structure. A 
circle is no longer a curve to be reconstructed, but a form that occupies a known fraction of its container. 
This is not a simplification, it is a structural reformulation. GRM does not avoid π; it renders it 
unnecessary by shifting the geometric lens from internal derivation to external proportion. 
 

1.5 Structure of the Document 

The chapters that follow develop this argument step by step: 

• Chapter 2 outlines the limitations of classical geometry in digital systems and the need for a 
paradigm based on structural proportion. 

• Chapter 3 introduces the GRM’s core logic, its ratio units (SPU, SAU, SVU), and the concept of 
the derived radius. 

• Chapter 4 explores how GRM logic integrates naturally into AI pipelines, digital interfaces, and 
pixel-based recognition systems. 

• Chapter 5 reflects on the cognitive and conceptual shift from internal to external reasoning, and 
its value in didactic, design, and scientific domains. 

• Chapter 6 looks forward, considering future applications and hybrid models where GRM and 
classical systems can co-exist and enrich one another. 

Together, these chapters form a coherent foundation for understanding GRM not merely as a tool, but as 
a digital geometry paradigm, one whose time has come. 
 

2. Digital Constraints and the Need for a Rational 

Paradigm 
As digital systems continue to expand their role in design, simulation, education, and artificial intelligence, 
it becomes increasingly clear that traditional geometry (built on the assumptions of continuity and infinite 
precision) does not fully align with how digital environments perceive and process shapes. This chapter 
explores the structural and computational constraints of digital systems, and shows why a rational, 
proportion-based paradigm such as the GRM is not only helpful, but necessary. 
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2.1 The Limits of Classical Geometry in Discrete Systems 

Classical geometry was developed for a continuous world. It presumes smoothness, infinite divisibility, 
and the ability to draw perfect curves and calculate exact intersections. These assumptions hold true in 
mathematics and in physical reality, but they do not translate cleanly into the realm of digital 
representation. 
Digital systems do not draw curves. They approximate them. Pixels cannot express continuity; they 
represent discrete, quantized states in a finite grid. When a circle is rendered on a screen, it becomes a 
stepped outline, not a mathematically perfect arc. When a curved surface is processed by a computer 
vision algorithm, it becomes a field of pixel densities and edges, not a function of radial distance. 
Despite these constraints, classical geometry remains the dominant logic even in digital design and 
analysis. Shapes are still described in terms of radius, diameter, and π-based curves, requiring conversion, 
estimation, and tolerance logic at every stage of digital processing. This mismatch results in unnecessary 
computational overhead, loss of interpretability, and the frequent need to retrofit analog logic into digital 
workflows. 
 

2.2 Resolution, Approximation, and the Nature of the Pixel 

In rasterized systems, geometry is not measured but counted. A pixel is either part of a shape or it is not. 
A boundary is not a smooth line, but a jagged edge defined by discrete color or intensity transitions. Any 
attempt to represent a continuous value (such as a radius or curved perimeter) must be approximated 
through interpolation, regression, or segmentation. 
This has significant implications for how shapes are interpreted in digital contexts. Area becomes pixel 
count. Volume becomes voxel occupancy. Perimeter becomes the edge between pixel clusters. These are 
not defects; they are features of the system itself. They reflect the nature of visual data as it is captured, 
processed, and interpreted by machines. Yet current geometry often treats this digital logic as a problem to 
be solved, rather than a reality to be embraced. The GRM offers a model that aligns with pixel logic 
instead of working against it. 
 

2.3 Discreteness, Boundedness, and the Logic of Computation 

Digital systems are not just discrete in structure, they are bounded in capacity. They operate within fixed 
memory, limited resolution, and constrained runtime. This places limits on how many steps, how much 
floating-point precision, and how much recursive estimation can be performed in real time. 
More importantly, digital systems interpret the world through containers: bounding boxes, input masks, 
cropped fields, and axis-aligned regions.  
Geometry, in this context, is not a free-floating entity but a spatial structure defined relative to its 
container. A circle is not known by its radius, but by how much of the box it fills. A 3D shape is not 
measured by internal formulas, but by how many voxels it occupies in a cube. 
GRM aligns with this container-first logic. It defines shape identity not as a function of internal values, but 
as a proportion of bounding space, making it inherently computable, explainable, and scalable across 
systems. 
 

2.4 Why Digital Systems Require a Different Geometric Lens 

There is a deeper distinction to be made: digital environments do not obey physical laws, they 
simulate them. Classical physics is continuous. It assumes mass, time, curvature, and causality as smooth 
and interwoven. In digital systems, however, these properties are reinterpreted as discrete operations, 
frame-based updates, and data structures. There is no real gravity in a game engine. No true curvature in a 
raster image. Only approximations, patterns, and logical conditions. 
This means that traditional geometric reasoning (based on continuity, symmetry, and intrinsic measures) 
no longer operates natively. It must be translated, approximated, or reconstructed. 
The Geometric Ratio Model removes the need for this translation. It begins from the structural 
assumptions of digital systems: bounded forms, proportional reasoning, and countable occupation. A 
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shape is not calculated from a radius. It is identified by its ratio. A circle becomes the form that fills 
78.54% of its square. A sphere, 52.36% of its cube. These ratios are not approximations of π, they are 
substitutes for it in environments where π is not visible. 
This is not an abandonment of classical geometry, but a recognition that the logic of computation requires 
its own geometric language, one built on proportion, not projection. 
 

3. The GRM as a Foundational Metric System 
The previous chapter outlined why traditional geometry, with its reliance on internal parameters and 
continuous forms, struggles to operate natively within digital environments. In response, the Geometric 
Ratio Model offers a coherent alternative: a system in which geometric identity is defined through fixed 
ratios relative to bounding structures. This chapter introduces the foundational logic of the GRM, 
detailing how shapes are interpreted as proportions of squares and cubes, and how this leads to a rational, 
scalable, and dimensionally consistent metric system. 
 

3.1 Bounding Forms and Proportional Identity 

At the core of the Geometric Ratio Model lies a shift in perspective: instead of calculating geometric 
properties from internal measurements, GRM defines shape identity by how much of a known bounding 
structure a shape occupies. This bounding structure is always a square (in 2D) or a cube (in 3D), and the 
identity of a shape is expressed as a fixed, rational ratio relative to it. 
This logic reframes shape recognition as a question of structural proportion, not parametric derivation. A 
shape becomes recognizable by its fit, by the measurable share of space it fills within its container. This 
makes GRM scale-free, unitless, and directly compatible with visual, pixel-based systems. 
 

3.1.1 The Circle and the Square: A Fixed Ratio of 0.7854 SAU 

A perfect example of GRM logic is the relationship between a circle and the square that contains it. 
When a circle is perfectly inscribed in a square, meaning it touches all four sides, it occupies exactly: 

0.7854 SAU (Square Area Units)≈ π/4 ≈ 78.54% of the square’s area. 
This value is not an approximation of π. It is a structural identity ratio. Any shape that fills a square to this 
ratio, and shows radial symmetry, can be recognized as circular; without invoking π, radius, or arc-based 
curvature. 
This same logic extends to 3D: 

• A sphere inscribed in a cube occupies 0.5236 SVU (≈ π/6 of the cube’s volume) 

• A triangle inscribed in a square occupies 0.4330 SAU (for an equilateral triangle) 
These are fixed identifiers, not derived calculations. They allow shape classification to occur directly from 
structure, without needing internal parameters. 
 

3.1.2 Bidirectional Definition: Mutual Dependency Between Shape and Container 

The relationship between shape and bounding structure is not one-directional. It is mutually defining: 

• A square defines the circle it contains, by providing its diameter and frame. 

• A circle, conversely, defines the square it fits in, by projecting its diameter outward. 
This reciprocity is central to the GRM. It means that geometry can be constructed either: 

• From outside-in (container → shape), or 

• From inside-out (shape → container) 
This dual logic makes GRM interoperable with both classical and modern workflows. In design systems, 
you might begin with the available space. In parametric CAD, you might begin with a known radius. GRM 
supports both. More importantly, this principle holds across dimensions. In 2D: square and circle. In 3D: 
cube and sphere.  
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The identity of the shape and the structure that contains it are proportionally entangled and can be 
inferred from one another using nothing but rational ratios and structural fit. This mutual dependency 
makes GRM highly adaptable, visually intuitive, and robust for classification, recognition, and scalable 
construction. 
 

3.2 SPU, SAU, SVU – Fixed Ratios as Rational Units 

To formalize GRM logic, three core units are introduced: 

• SPU – Square Perimeter Unit 

• SAU – Square Area Unit 

• SVU – Square Volume Unit 
Each unit is defined in reference to a bounding form with a normalized value of 1: 

• A square with side length s has perimeter 4s → 1 SPU = 4s 

• The same square has area s² → 1 SAU = s² 

• A cube with side s has volume s³ → 1 SVU = s³ 
By establishing these units, shapes can be compared dimensionlessly across size, scale, and resolution. A 
circle occupying 0.7854 SAU occupies 78.54% of any square, regardless of its absolute size. This makes 
GRM unitless, scalable, and fully consistent across systems. It decouples geometric identity from units of 
length, pixels, or resolution, allowing proportional logic to operate on its own rational terms. 
 

3.3 The Radius as a Derived Property (r = 0.1250 SPU) 

One of the most significant shifts in GRM is the reversal of geometric logic: instead of starting with the 
radius and deriving the bounding square, GRM starts with the square, and derives the radius. 
For a circle perfectly inscribed in a square: 

• The side of the square = diameter of the circle 

• Therefore, the radius = side / 2 
If we normalize the square’s perimeter to 1 SPU (so side = 0.25), then: r = 0.1250 SPU. 
This value is constant, dimensionless, and universally applicable within the GRM system. It allows for 
radius-based calculations without requiring radius-based input. More importantly, it reinforces GRM’s 
external logic: shapes are not defined from within, but from their fit inside an observable structure. In this 
formulation, the radius becomes a consequence of the square, not a prerequisite for the circle. 
 

3.4 Dimensional Consistency Across 1D–2D–3D 

The GRM framework is inherently dimensionally consistent. Its logic extends naturally from 1D to 2D to 
3D using proportional occupation and bounding logic: 

Dimension Container Unit Example Shape GRM Ratio 

1D Line SPU Point (0D) midpoint N/A 

2D Square SAU Circle 0.7854 

3D Cube SVU Sphere 0.5236 

This consistency enables intuitive transitions between dimensions. A designer, educator, or system can 
reason about the proportional identity of shapes using a single unified system. There is no need to 
redefine metrics across dimensions, only the container changes. This also allows GRM to serve as a 
dimensionally agnostic foundation for applications like computer vision, CAD, geometry education, and 
spatial classification. 
 

4. Native Fit with Digital and AI Systems 
This chapter builds on the theoretical foundation of Chapters 2 and 3 by showing how GRM logic 
integrates seamlessly into digital environments; especially those driven by pixels, data structures, and visual 
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interpretation. It focuses on the computational clarity, robustness, and resolution independence of the 
model, and demonstrates why GRM is uniquely well-suited for real-time, automated, and scalable digital 
systems. 
 

4.1 Pixel-Based Measurement and Shape Classification 

In traditional geometry, shape identity is calculated through internal measurements,  typically involving 
radius, angles, and analytical curves. In digital systems, this approach is often impractical or 
computationally expensive. A raster image, for example, does not contain a measurable radius, it contains 
pixels. 
GRM offers a structural alternative: it defines shapes by their proportional occupancy of a bounding 
box. This ratio-based logic allows a digital system to identify a circle not by curve-fitting or trigonometric 
regression, but simply by counting the number of pixels inside the shape and comparing it to the area of 
its enclosing square. If the ratio is close to 0.7854, the shape is likely circular. No π required. 
This approach drastically reduces computational overhead. It also improves classification robustness in 
noisy, low-resolution, or ambiguous contexts, where traditional curve-based methods fail. 
If needed, classical measures such as the radius can still be derived from the square’s side or perimeter 
using GRM logic; for example: r = 0.1250 SPU for a perfectly inscribed circle. This allows compatibility with traditional 
metrics, without depending on them for primary identification. 
 

4.2 Resolution Independence and Scale-Free Reasoning 

Because GRM operates on proportional logic, it is completely resolution-independent. A circle that fills 
78.54% of its square container will do so regardless of whether that container is 10×10 pixels or 
10,000×10,000 pixels. The logic holds at any scale. 
This makes GRM an ideal framework for: 

• Cross-resolution analysis in image recognition 

• Responsive design systems where elements must scale predictably 

• Multi-size classification tasks where consistent shape identity must be preserved 
Traditional geometry often requires recalculating curves, adjusting precision thresholds, or applying 
smoothing techniques when resolution changes. GRM does not. Its ratios are dimensionless, constant, and 
mathematically stable across all digital resolutions. 

 

4.3 Explainability and Lightweight Computation 

In AI and machine learning pipelines, explainability is a growing requirement; especially in domains like 
healthcare, autonomous systems, and education. GRM supports explainable logic by replacing hidden 
mathematical inference with visually verifiable proportions. 
A system can explain its classification of a shape by pointing to a simple ratio: “This object fills 0.784 of its 
bounding square, therefore it is most likely a circle.” 
No deep algebra, no opaque model weights, just a clear relationship between what is seen and what is 
computed. This increases trust, debuggability, and user understanding. 
Moreover, GRM logic is computationally lightweight. Pixel counts and bounding box calculations are fast 
and scalable, often implementable in a few lines of code using standard image processing libraries. This 
makes GRM particularly well-suited for: 

• Edge devices and low-power systems 

• Embedded classification tools 

• Real-time inspection, monitoring, or feedback systems 
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4.4 Integration with AI Pipelines and Real-Time Systems 

Beyond standalone use, GRM logic integrates cleanly into existing AI and vision architectures. It can 
function as: 

• A pre-filter for shape proposals (e.g., reject non-GRM-conforming regions) 

• A post-processing validator for neural network outputs 

• A fallback or hybrid method when model confidence is low 
 
For example, a convolutional network may detect a shape and label it as circular. A GRM-based ratio check can then 
confirm whether the detected object conforms to the canonical occupancy (e.g., within a defined tolerance band around 0.7854 
SAU). If it does not, the system may lower confidence, suggest an alternative label, or flag the case for review. 
 
This hybrid architecture (learned features + ratio validation) enhances both accuracy and explainability. 
GRM provides a structural ground truth that can guide or correct AI systems without introducing heavy 
computation or black-box logic. 
In real-world applications where shapes may be incomplete, noisy, or slightly deformed, GRM’s tolerance 
and deviation framework can be applied. This allows for fuzzy classification based on proximity to 
canonical ratios, enabling graceful degradation and confidence scoring within AI pipelines. 
Moreover, the same logic applies in three-dimensional systems. Just as a circle occupies 0.7854 SAU in 
2D, a sphere occupies 0.5236 SVU in 3D, enabling the same GRM-based validation for volumetric data 
such as CT scans or LIDAR reconstructions. 
 
From Digital Fit to Conceptual Shift 
GRM’s value lies not only in what it simplifies, but in what it enables. By reframing geometry in terms of 
proportion, structure, and container-based logic, GRM redefines how digital systems interpret shape. But 
in doing so, it also invites us to rethink our own assumptions about what geometry fundamentally is. This 
conceptual shift is the focus of the next chapter. 

5. A Shift in Geometric Thinking 

This chapter reframes the GRM not just as a computational convenience, but as a new way to think about 
what geometry is, particularly in digital, educational, and design contexts. It captures how GRM moves us 
from abstract constants and internal formulas to visual logic, external proportion, and structural reasoning. 

5.1 From Intrinsic Formulas to Structural Ratios 

In classical geometry, shapes are defined intrinsically. A circle is defined by its radius; its area is πr²; its 
perimeter is 2πr. These formulas assume that the shape is known from the inside out, from an internal 
parameter, and from a mathematical ideal. 
GRM inverts this logic. It begins by asking: “What proportion of the container is occupied?” and from that, infers: 
“Which shape corresponds to this ratio?” The focus shifts from intrinsic construction to structural proportion. 
This reframing matters. It aligns with how shapes are perceived and measured in digital systems, and 
increasingly in educational and design contexts. By anchoring geometry in ratios rather than parameters, 
GRM enables a logic that is both intuitive and visually confirmable. Geometry becomes a matter of form, 
fit, and relational identity, not equation memorization. 
 

5.2 From Abstract Constants to Visual Logic 

π, √2, and other irrational constants are foundational in classical mathematics. But in practical and visual 
contexts, they are not seen, they are used. They require explanation, approximation, and translation into 
digital form. 
GRM removes the need for this abstraction by offering visually measurable constants. The ratio 0.7854 is 
not a numerical trick, it is a literal description of what a circle does inside a square. It is a constant you can 
draw, count, and verify. 
This visual logic is especially powerful in: 
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• Design systems, where shapes must fit containers predictably 

• User interfaces, where proportional scaling is required 

• Education, where learners benefit from seeing relationships rather than memorizing rules 
By replacing hidden derivations with observable relationships, GRM supports explainable geometry, not 
only for machines, but for humans. 
 

5.3 From Ideal Identity to Tolerant Classification 

Classical geometry deals in perfect forms: circles, triangles, and polygons defined by strict conditions and 
exact formulas. But real-world shapes, especially in AI, design, and biology, rarely behave perfectly. They 
are deformed, partial, noisy, or composite. 
GRM embraces this reality by offering a tolerant model of classification. A shape that fills 0.765 of a 
square may still be recognized as “mostly circular.” A semicircle may yield a ratio of 0.3927. A distorted 
hexagon may still be within a tolerance band of 0.8660. 
This approach shifts geometry from binary identity to graded interpretation, and enables systems to work 
reliably even when perfection is absent. Instead of failing when the shape is not exact, GRM provides 
confidence-based reasoning rooted in proportional logic. 
This is particularly useful in: 

• AI vision systems, where pixelated input demands flexible thresholds 

• Educational tools, where learners experiment with imperfect drawings 

• Design and architecture, where tolerance zones guide fabrication 
GRM thus becomes not just a way to measure, but a way to classify, tolerate, and understand variation. 
 

5.4 Educational and Cognitive Advantages 

The GRM reframing does more than streamline computation, it transforms how we teach, learn, and 
reason about geometry. 
Students are no longer required to accept π as an article of faith, or to memorize formulas disconnected 
from visual reality. Instead, they are invited to explore relationships: how shapes fit inside containers, how 
one form compares to another, and how proportions tell a story. 
GRM can be taught with blocks, paper, or pixels. It allows geometry to be constructed from the outside in 
(square first, shape second) and encourages learners to think in terms of structure, ratio, and 
transformation. This is particularly empowering for: 

• Visual learners 

• Vocational education 

• Cross-disciplinary domains (e.g., architecture, graphic design, AI) 
What emerges is not only an alternative geometric logic, but a more human-centered approach to 
geometry itself. 

6. Future Outlook: GRM as a Digital Standard 
This chapter projects the practical and conceptual potential of the GRM beyond the current applications. 
It frames GRM not only as a model, but as a candidate standard for geometric reasoning in digital 
environments, especially where structure, scalability, and interpretability are essential. 

6.1 Applications in Design, Education, AI, and Interfaces 

The use cases for the Geometric Ratio Model are expanding across multiple domains. In each of them, 
GRM offers a shift from internal, floating-point geometry to external, ratio-based reasoning: 

• In design and CAD, GRM enables fixed-ratio templates, container-first scaling, and structural 
validation of components. A designer can specify: “This element must occupy 43.30% of its 
bounding box,” and immediately apply the triangle identity. 
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• In education, GRM replaces memorized formulas with visual logic. Students explore proportional 
relationships, test identities with grids or blocks, and develop an embodied sense of geometric 
reasoning. 

• In AI and computer vision, GRM provides lightweight post-processing modules that classify, 
validate, or filter shapes based on structural logic — not deep statistical inference alone. 

• In interface and game design, GRM allows shapes to scale consistently across screens and 
resolutions, without breaking layout integrity or proportional harmony. 

Across these domains, GRM offers not just a toolset, but a way of seeing. 
 

6.2 Hybrid Approaches and Coexistence with Classical Geometry 

The GRM is not a replacement for classical geometry, it is a complement. The two systems can coexist, 
depending on context: 

• Classical formulas remain essential for calculus, physical simulation, and analytical derivation. 

• GRM excels in structure-first systems: visual reasoning, shape classification, container logic, and 
low-resource environments. 

• A hybrid model allows systems to shift fluidly between logic types. A CAD engine might use 
GRM to fit components to containers, then fall back on traditional geometry for precise 
curvature rendering. An AI model might detect a region using convolutional filters, then apply 
GRM ratios to validate the result. 

Rather than replacing π, GRM allows us to choose when π is actually needed. Often, it is not. 
 

6.3 Open Research and Development Trajectories 

As a model, GRM invites further development. Open questions include: 

• How far can GRM logic be extended to irregular or composite shapes? 

• Can vector-based interfaces integrate GRM ratios natively, with real-time feedback? 

• What role can GRM play in high-dimensional reasoning (e.g., n-spheres, data topology)? 

• How can GRM be formalized as a curriculum framework, or integrated into national STEM 
education? 

GRM also opens a door toward a new kind of geometry engine: one not based on curvature, but on 
relational identity. Such systems could form the basis of next-generation design software, explainable AI 
shape interpreters, or real-time geometry validators. 
 

6.4 Toward a Scalable, Visual Grammar of Shape 

Ultimately, GRM points toward a larger vision: a grammar of geometry that is scalable, explainable, and 
visually grounded. One where: 

• Shapes are known by how they fit 

• Logic begins at the boundary, not the center 

• Identity is measured in proportion, not inference 
Such a grammar is especially vital in an era of digital abstraction, where screens, models, simulations, and 
machines all need ways to interpret and reason about form. 
The Geometric Ratio Model does not close geometry, it opens it. It adds a new layer to an ancient field: 
one built for pixels, patterns, and proportion. In doing so, it invites us not only to calculate differently, but 
to see differently. 
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Closing Reflection 
As geometry enters the digital age, it must adapt to a world that is no longer continuous, but discrete. A 
world of pixels, grids, and bounding boxes. In this environment, classical formulas still hold truth, but 
they no longer hold priority. 
The Geometric Ratio Model does not oppose traditional geometry; it completes it. It reframes familiar 
shapes through the logic of proportion, structure, and containment. By defining identity not through 
internal parameters, but through visible occupation, GRM introduces a language that machines can 
compute, designers can trust, and learners can grasp. 
What began as a reconsideration of the circle within the square becomes, ultimately, a broader vision: a 
geometry of fit, a grammar of form, a rational system built not to approximate the past, but to shape the 
future. 
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Appendix A – GRM Ratio Reference Table 
The following table summarizes canonical GRM ratios for commonly inscribed geometric shapes. Each 
ratio represents the proportion of the container (square or cube) occupied by the shape, and serves as a 
structural identity within the GRM framework. These values are dimensionless and resolution-
independent. 
 

Shape Container Ratio Type GRM 
Ratio 

Comment 

Circle Square Area (SAU) 0.7854 Perfectly inscribed (π/4) 

Sphere Cube Volume 
(SVU) 

0.5236 Perfectly inscribed (π/6) 

Equilateral 
Triangle 

Square Area (SAU) 0.4330 Base-aligned, perfectly inscribed 

Regular Hexagon Square Area (SAU) 0.8660 Horizontal edge-aligned 

Semicircle Square Area (SAU) 0.3927 Flat edge aligned with square side 

Quarter Circle Square Area (SAU) 0.1963 Corner-inscribed (¼ of 0.7854) 

Square Square Area (SAU) 1.0000 Full occupation (reference 
container) 

Cube Cube Volume 
(SVU) 

1.0000 Full occupation (reference 
container) 

 
These values can be used for direct classification, design validation, and resolution-independent shape 
detection. Tolerance bands may be applied around each canonical ratio for real-world applications, as 
discussed in related proposals. 
  



© 2025 M.C.M. van Kroonenburgh, MSc. This model may be used, shared, and cited for educational and non-commercial purposes with 

proper attribution. Commercial use, reproduction, or modification requires prior written permission from the author.    Version 1.1  15 
 

Appendix B – Comparison Matrix: Classical vs GRM-

Based Logic 
The table below summarizes how the Geometric Ratio Model (GRM) differs from traditional and 
computational approaches to geometry. While inspired by classical principles, GRM introduces a 
foundational shift in how shapes are defined, compared, and interpreted; particularly within digital 
systems. 
 

Feature Classical 
Geometry 

Computational 
Geometry 

GRM 

Starts from radius/π         

Uses bounding container as reference   Partially    

Defines shape identity by fixed ratio        

Works across 1D/2D/3D with one logic        

Supports bidirectional logic Implicit Rare    + 
explicit 

Designed for visual/digital systems   Sometimes    

Introduces rational metric units 
(SPU/SAU/SVU) 

       

Avoids irrational constants in core logic        

Enables direct classification from 
occupancy 

       

Dimensionally scalable and container-
based 

  Partially    

 

 
Interpretation: 
This matrix highlights GRM’s unique position as a digital-native geometric framework. While classical 
geometry remains essential for continuous systems and analytical derivation, and computational geometry 
extends it toward numerical approximation, GRM reframes geometry entirely around structural logic and 
proportional identity. It introduces scalable, explainable, and rational tools for reasoning about shape, built 
from the boundary inward. 
Together with the fixed ratios in Appendix A, this comparison illustrates why GRM is not merely an 
adaptation, but a paradigm in its own right. 
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Appendix C – Glossary of GRM Terms 

Term Definition 

GRM (Geometric 
Ratio Model) 

A proportional and container-based system of geometry designed for digital 
environments. GRM defines shapes by their ratio of occupancy within a square or 
cube, rather than by internal parameters like radius or angles. 

SPU (Square 
Perimeter Unit) 

A normalized unit representing the full perimeter of a square container. For a 
square of side length s, SPU = 4s. Used in 1D and perimeter-based comparisons. 

SAU (Square Area 
Unit) 

A normalized unit representing the area of a square container. For a square of side 
s, SAU = s². Used for 2D proportional identity of shapes. 

SVU (Square 
Volume Unit) 

A normalized unit representing the volume of a cube container. For a cube of side 
s, SVU = s³. Used for 3D proportional identity. 

Fixed Ratio 
A constant, dimensionless value representing the proportion of a container that is 
filled by a canonical shape (e.g., a circle fills 0.7854 SAU of a square). 

Ratio Identity 
The structural fingerprint of a shape within GRM, defined by its occupancy ratio 
(e.g., 0.5236 SVU for a sphere). Used for classification and comparison. 

Bounding Form 
The square or cube that encloses a shape fully and serves as the reference for its 
GRM ratio. 

Bidirectional Logic 
The principle that both the bounding container and the shape can define each 
other’s dimensions and identity, enabling both top-down and bottom-up 
construction. 

Tolerance Band 
A margin around a fixed GRM ratio used to allow for imperfect shapes, real-world 
deviation, or digital noise during classification. 

Resolution 
Independence 

The ability of GRM logic to function identically across different pixel densities or 
scale levels, because it operates on ratios, not raw dimensions. 

 


