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Summary 
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The model replaces abstract irrational constants, such as π, with fixed ratios within standard shapes 
(square and cube) and offers applications in education, engineering, visualization, design, and systems 
thinking.  

It is both didactically accessible and theoretically scalable to higher dimensions. 
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Version update notes – From 2.0 to 3.0 
This third version of the GRM whitepaper represents a significant evolution from version 2.0, both in clarity and in 
practical applicability. The core logic of the Geometric Ratio Model remains unchanged, but several important 
refinements have been implemented: 

• Improved structure and tone: The writing style has been updated for consistency, clarity, and narrative 
cohesion, aligning with academic and technical standards while remaining accessible. 

• Expanded dimensional framework: The foundational section has been restructured to better explain the 
1D–2D–3D transition, with new visuals illustrating SPU, SAU, and SVU as coherent dimensional units. 

• New application domains and visuals: Four key domains, Design & CAD, AI & Classification, 
Education, and Measurement, have been expanded with real-world examples and custom illustrations 
demonstrating the added value of GRM logic. 

• Rewritten appendices: Appendices A and C have been fully rewritten to match the new tone and to 
better explain the geometric identity of the hexagon and classification tolerances using GRM ratios. 

• Updated tables and summaries: Table 4.5 and accompanying summaries have been reformulated to 
better align with the discussed content, focusing only on domains elaborated in this version. 

• Visual consistency and corrected figures: All illustrations have been recreated using GRM principles, 
ensuring correctness in ratio application, especially in dimensional enclosures (e.g., circles and spheres 
perfectly inscribed within containers). 

These updates collectively elevate the whitepaper to a mature reference document, suitable for publication, academic 
discussion, and applied implementation in digital systems. 
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Peer review invitation 
This whitepaper represents version 3.0 of the Geometric Ratio Model (GRM), a framework developed to 
enable fixed-ratio reasoning in geometry, with specific relevance to digital systems, education, and design 
logic. 

The content has been reviewed internally for consistency, correctness, and practical alignment with real-
world applications. However, as an evolving concept that bridges classical geometry and proportional 
logic, the GRM remains open to critical feedback, empirical validation, and collaborative refinement. 

We invite experts, researchers, and practitioners from the following fields to review this work and provide 
constructive feedback: 

• Geometry and mathematical logic 

• Computer-aided design (CAD) and engineering 

• Artificial intelligence and pattern recognition 

• Educational methodology and visual reasoning 

• Philosophy of mathematics and systems thinking 

If you are interested in contributing to the academic or technical review of this model, or wish to 
collaborate on implementation, experimentation, or publication, please contact: 

Maarten van Kroonenburgh, MSc 
info@inratios.com 
 

Your feedback will directly support the future development, validation, and responsible deployment of 
GRM logic in both theoretical and applied contexts. 

  

mailto:info@inratios.com
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1. Introduction and core vision 

1.1 Background 

For centuries, the mathematical constant π (pi) has been central to geometry. Defined as the ratio of a 
circle’s circumference to its diameter, π is an irrational number that cannot be expressed exactly in decimal 
form. While π is mathematically robust, its application in education, digital systems, and geometric 
reasoning often presents challenges: it is abstract, indirectly measurable, and inherently resistant to 
intuitive interpretation. 

In contemporary context, where digital simulation, visual reasoning, and hands-on education increasingly 
dominate, the need for alternative geometric approaches has grown. Geometry is no longer confined to 
theoretical derivation; it must also be actionable, scalable, and perceptually grounded. The Geometric 
Ratio Model (GRM) arises in response to this shift: not to redefine mathematics, but to reformulate 
geometry in a way that better serves modern cognitive and computational frameworks. 

 

1.2 Purpose and motivation 

The purpose of the GRM model is to reframe the way geometric properties (such as perimeter, area, and 
volume) are represented and applied. Rather than expressing these through abstract constants, the model 
proposes a system of fixed ratios within simple, universally measurable forms: the square (2D) and the 
cube (3D). These shapes serve as standard reference units across dimensions: 

• The square perimeter becomes 1 SPU (Square Perimeter Unit) 

• The square area becomes 1 SAU (Square Area Unit) 

• The cube volume becomes 1 SVU (Square Volume Unit) 

Within this framework, other shapes (such as the circle or sphere) are 
expressed in relation to the square or cube that encloses them. For 
instance, a circle inscribed within a square has a fixed perimeter ratio of 
π/4 ≈ 0.7854 SPU and an area ratio of π/4 ≈ 0.7854 SAU. A sphere 
within a cube yields a volume ratio of π/6 ≈ 0.5236 SVU. 

The GRM does not replace π as a constant. Instead, it recasts π-derived 
results into relative metrics that can be observed, measured, and applied across disciplines. This makes the 
model both didactically intuitive and computationally adaptable. 

 

1.3 Core vision 

The core vision of the GRM model is to establish a scale-free, visually grounded, and dimensionally 
consistent geometry. It emphasizes relational properties over absolute values, and structural containment 
over symbolic derivation. The model introduces the following three guiding principles: 

• Visual Intuition: Shapes are identified and compared through their relationship to enclosing 
forms, not through abstract computation. 

• Relational Logic: All measurements are expressed as fixed ratios within a standard container, 
offering universality and comparability. 

• Dimensional Scalability: The model is inherently extensible across 1D, 2D, 3D, and beyond, 
using a single proportional language. 



This work is officially registered via i-Depot (BOIP). Reference no. 151927 – May 10, 2025. 

 

© 2025 M.C.M. van Kroonenburgh, MSc. This model may be used, shared, and cited for educational and 
non-commercial purposes with proper attribution. Commercial use, reproduction, or modification 
requires prior written permission from the author.    Version 3.1     7 
 

By rooting these principles in simple geometric structures, the GRM model creates a bridge between 
theoretical rigor and applied insight. It supports geometric reasoning that is both precise and perceptually 
accessible. 

It is important to emphasize that the GRM model is not intended to redefine classical mathematics. 
Rather, it provides a complementary metric framework that better serves digital computation, educational 
practice, and systems-based thinking. The model retains compatibility with traditional geometric theory 
while enabling novel pathways for learning, simulation, and design. 

 

1.4 Outlook on higher dimensions 

Although the GRM model focuses primarily on the first three spatial dimensions, its logic is naturally 
extendable. The ratio between an inscribed hypersphere and its enclosing hypercube, such as in four-
dimensional space, can be derived and expressed as a fixed metric, for example: 

𝑉𝐸4 =
𝜋2

32
≈ 0.3084     

This extension demonstrates that the GRM model 
can evolve into a universal geometric framework, 
applicable across dimensions and domains. It 
opens new avenues for research in 
multidimensional design, digital modeling, and 
even mathematical philosophy. 

The following chapters will elaborate the GRM 
model step by step, examining its foundations, 
comparing it with classical formulations, exploring 
its applications, and reflecting on its broader 
significance. 

 

2. Foundations of the GRM Model 

2.1 The standard form: The square and the cube 

The Geometric Ratio Model (GRM) begins with a simple yet powerful premise: that all geometric 
quantities, length, area, and volume, can be referenced to a single, well-defined standard shape. In two 
dimensions, this is the square; in three dimensions, the cube. These shapes form the metric backbone of 
the GRM system. 

By assigning fixed measurement units to these standard forms, we establish a universal framework that is 
both dimensionally consistent and intuitively visual: 

• The perimeter of a square is defined as 1 SPU (Square Perimeter Unit) 

• The area of the square is defined as 1 SAU (Square Area Unit) 

• The volume of the cube is defined as 1 SVU (Square Volume Unit) 

These values are not arbitrary. They represent the full metric content of a shape when its side length  

𝑆 = 1. Within this standardized configuration, other shapes (such as circles, spheres, or polygons) can be 
inscribed, compared, and interpreted using fixed ratios. 

  

Figure 1.2 GRM ratios 
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Figure 2.2.1 Square and cube, each annotated with perimeter = 1 SPU, area = 1 SAU, volume = 1 SVU 

This normalization process allows the GRM to eliminate dependency on absolute units or irrational 
constants, and instead reason proportionally: “How much of the container does this shape occupy?” 

For example, when a circle is perfectly inscribed in a square of side length 1, its perimeter becomes approximately 0.7854 
SPU, and its area 0.7854 SAU. A sphere, when inscribed in a cube, occupies 0.5236 SVU. 

These fixed proportions form the foundation of GRM’s ratio logic. The model no longer depends on π as 
a symbolic constant; instead, it expresses geometric identity as a dimensionless relationship between a 
shape and its enclosing structure. 

This proportional reasoning extends seamlessly across dimensions, as the next sections will demonstrate. 

 

Table1.1 - Standard Ratios in the GRM Model 

Dimension Measurement 
Aspect 

Standard 
Shape 

Formula (s=1) Ratio Unit 

1D Length (perimeter) Square 4𝑠 1 1 SPU 

2D Area Square 𝑠² 1 1 SAU 

3D Volume Cube 𝑠³ 1 1 SVU 

 

Supplementary overview: Ratios in standard and inscribed shapes 

The table above shows fixed ratios between standard geometric shapes (the square and cube) and their 

perfectly inscribed counterparts (such as the circle and sphere), assuming a side length of 𝑠 = 1. These 
ratios are normalized to the enclosing square or cube and represent dimensionless constants within the 
GRM system. This provides insight into how SPU, SAU, and SVU function as universal, scalable 
reference units for geometric identity and measurement. 
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2.2 Enclosed shapes as ratio carriers 

One of the key innovations in the Geometric Ratio Model (GRM) lies in its treatment of shapes not as 
isolated entities, but as ratios within a defined boundary. Specifically, shapes that are perfectly inscribed within 
a square (2D) or cube (3D) take on a fixed ratio relative to that container. This transforms them from 
absolute figures into dimensionless carriers of geometric identity. 

The most familiar example is the circle, inscribed within a square of side length 𝑠 = 1. Its perimeter and 
area are no longer calculated using π, but are instead expressed directly as: 

• Perimeter: 

𝑅𝑎𝑡𝑖𝑜 =  

𝜋𝑠
2

4𝑠
=  

𝜋

4
 ≈ 0.7854 𝑆𝑃𝑈 

 

• Area: 

𝑎𝑡𝑖𝑜 =  

𝜋𝑠2

4
𝑠2

=  
𝜋

4
 ≈ 0.7854 𝑆𝐴𝑈 

 

This fixed value (0.7854) serves as a universal identity for the circle, grounded in its relationship to the 
square. It reflects not the raw dimensions of the shape, but how it behaves within a standardized reference unit. 

 

Figure 3.2.1 - A circle inscribed in a square occupies 0.7854 of its area 

Additional enclosed forms 

The logic of proportional identity can be extended to other shapes: 

• A regular hexagon inscribed in a square occupies approximately 0.8660 SAU. 

• A regular triangle (equilateral) inscribed in a square covers exactly 0.5000 SAU. 

• A sphere inscribed in a cube occupies 0.5236 SVU. 

These values are invariant: they hold true regardless of the actual size of the container, as long as the shape 
remains perfectly inscribed. This makes GRM particularly powerful in digital, scalable, and comparative 
application; such as computer vision, design validation, and geometry-based AI. 
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Tabel 2.2 – Fixed Ratios of Enclosed Forms 

Dimension Shape Ratio Unit 

2D Circle (inscribed) 0.7854 SAU 

2D Hexagon (inscribed) 0.8660 SAU 

2D Triangle (inscribed) 0.5000 SAU 

3D Sphere (inscribed) 0.5236 SVU 

 

These values serve as geometric signatures. Within the GRM model, they enable fast, dimensionless 
recognition, classification, and comparison, without reliance on irrational constants or complex 
recalculation. Each ratio represents not a formula, but a fixed identity, valid as long as the enclosure is 
perfect. 

In later sections, we will explore how this logic applies in practical fields, from AI-assisted shape detection 
to scalable design evaluation. 

2.3 Dimensional consistency 

A defining strength of the Geometric Ratio Model (GRM) is its internal coherence across dimensions. 
Whether measuring a line, a surface, or a volume, the GRM maintains a unified metric logic. This 
dimensional consistency is achieved by expressing each geometric property (perimeter, area, or volume) as 
a fixed ratio within a standard container: the square (2D) or cube (3D). 

The GRM system begins in 1D with the Square Perimeter Unit (SPU), defined by a square with side 

length 𝑠 = 1, and a perimeter of 𝑠 = 4. By normalizing this perimeter to 1 SPU, any enclosed or related 
1D figure can be compared proportionally. In 2D, the area of the square becomes 1 SAU; in 3D, the 
cube’s volume becomes 1 SVU. 

This layered structure allows the same proportional logic to be applied seamlessly as complexity increases: 

• 1D (SPU): A line segment occupies a share of the square’s perimeter. 

• 2D (SAU): A shape such as a circle, triangle, or hexagon occupies a share of the square’s area. 

• 3D (SVU): A volumetric shape such as a sphere occupies a share of the cube’s volume. 

 

Figure 2.4 – GRM logic across 1D, 2D and 3D 



This work is officially registered via i-Depot (BOIP). Reference no. 151927 – May 10, 2025. 

 

© 2025 M.C.M. van Kroonenburgh, MSc. This model may be used, shared, and cited for educational and 
non-commercial purposes with proper attribution. Commercial use, reproduction, or modification 
requires prior written permission from the author.    Version 3.1     11 
 

This diagram illustrates the GRM logic across 1D, 2D, and 3D. 
Each dimension has a corresponding fixed ratio, which defines how much of the standard container is 
occupied by the enclosed form. 

Table 2.3 – GRM logic  

Dimension Shape Example Ratio Unit 

1D Line 0.2500 SPU 

2D Circle 0.7854 SAU 

3D Sphere 0.5236 SVU 

 

These ratios are scale-free and dimensionless. They allow for meaningful comparison and classification 
across dimensional levels, without reference to radius, diameter, or irrational constants. Instead, identity 
and measurement are derived from the proportional occupation of a standardized space. 

This consistency forms the conceptual spine of GRM: from simple lines to complex volumes, everything 
is expressed through the same language of bounded proportion. 

In later sections, this coherence will enable GRM to be applied in domains such as AI classification, 3D 
modeling, and geometry education, where transitions between dimensional levels must be intuitive and 
computationally efficient. 

 

2.4 Measurability and visualizability 

A key advantage of the Geometric Ratio Model (GRM) lies in its direct measurability and visual 
coherence. Unlike classical formulas that rely on internal parameters such as radius, height, or π-based 
calculations, the GRM expresses all geometric identities as ratios within visible structures. 

These ratios are not abstract constructs. They can be physically measured, approximated, and observed 
using simple tools: 

• In 1D, perimeter proportions can be measured with a ruler or string, comparing segments to a 
square’s total perimeter (SPU). 

• In 2D, areas can be assessed using grid tiles, pixel counts, or transparent overlays, matching the 
area of a circle or triangle against the square (SAU). 

• In 3D, volume can be evaluated via water displacement, voxel counts in imaging, or CAD-
integrated bounding boxes, comparing the filled volume to that of the cube (SVU). 

This visual logic is particularly powerful in educational and digital environments. Students, designers, and 
AI systems alike can detect and validate shapes based on visible containment and structural fit, rather than 
symbolic inference. 

 

Table 2.4 - Example applications 

Context Method Observable Unit 

Education Cut-out shapes in cardboard or transparent overlays SAU 

CAD & Design Bounding boxes and auto-fit routines SPU / SAU / SVU 
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Context Method Observable Unit 

AI & Image Processing Pixel/voxel ratios, segmentation masks SVU, tolerance bands 

Medical Imaging Voxel segmentation and bounding cube analysis SVU 

Physical Prototyping Liquid displacement (Archimedean) comparison SVU 

Unlike π, which cannot be physically isolated or measured directly, GRM ratios such as 0.7854 (circle) or 
0.5236 (sphere) can be experimentally confirmed using basic geometry and observable reference shapes. 
This makes the model inherently verifiable, even in low-tech or didactic contexts. 

It also bridges the gap between theoretical and applied geometry, supporting workflows where visual 
alignment and relational accuracy are more critical than symbolic perfection. 

In short: the GRM does not merely define shapes, it reveals them. 

 

2.5 Precision and error margins 

The Geometric Ratio Model (GRM) is built upon fixed, rational ratios, such as 0.7854 (π/4) for a circle or 
0.5236 (π/6) for a sphere, defined relative to their enclosing square or cube. These values, though derived 
from classical constants, are expressed in a dimensionless and scale-independent manner within the GRM 
system. 

While these ratios are technically approximations, their precision is more than sufficient for most 
applications in education, design, computation, and classification. 

 

Table 2.5 - Practical Comparison with Classical π-based Methods 

Use Case Classical Result (π-
based) 

GRM Ratio Absolute Error (4 
decimals) 

Area of inscribed circle (s = 1) π/4 = 0.7854 0.7854 0.0000 

Volume of inscribed sphere (s = 
1) 

π/6 = 0.5236 0.5236 0.0000 

Circumference of circle (s = 1) π = 3.1416 4 × 0.7854 = 
3.1416 

0.0000 

In practical terms, the difference is negligible. The GRM expresses these relationships as fixed multipliers 
against a defined unit, avoiding repeated recalculation and reducing dependency on irrational constants. 

 

Why this matters 

In digital systems and educational contexts, floating-point approximations of π and complex internal 
parameters (radius, height, etc.) often introduce: 

• rounding errors, 

• inconsistent scaling, 

• and unnecessary computational load. 

By contrast, GRM uses predefined, validated ratios with direct application across: 
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• design validation (e.g., does this object fill ~78% of its square?), 

• AI classification (e.g., confidence scoring based on match with known GRM ratios), 

• toleranced reasoning (e.g., deviation within ±0.03 of 0.5236 is likely spherical), 

• and educational models where clarity and reproducibility are crucial. 

 

Looking ahead: Toward ratio-based tolerances 

While GRM begins with ideal, fixed ratios, future sections will introduce tolerance bands around each 
canonical value. These will allow: 

• graded classification of imperfect or noisy shapes (e.g., in imaging), 

• confidence scoring based on proximity to ideal ratios, 

• and practical handling of deviation in manufacturing, detection, and modeling. 

By doing so, the model remains both mathematically grounded and operationally robust, especially when 
applied in real-world or digital scenarios where precision has contextual boundaries. 

 

2.6 Practical benefits of the GRM Model 

Beyond its theoretical clarity, the Geometric Ratio Model offers tangible advantages in practical, 
educational, and digital settings. By reframing geometry through fixed, relational ratios, the GRM unlocks 
a more usable, verifiable, and scalable approach to shape and dimension. 

What does this offer? 

1. Faster and clearer calculations 
With fixed ratios replacing complex π-based formulas, only a single multiplication factor is 
needed. This saves time and reduces both human and computational errors, ideal for fast 
evaluation, programming, and teaching. 

2. Simplification in education and training 
Students and technical learners work with concrete values (e.g. 0.7854 or 0.5236) rather than 
abstract constants. This makes geometry more visual, measurable, and conceptually accessible, 
especially in early education, vocational training, or cross-disciplinary learning. 

3. Consistency in digital systems 
Fixed ratio values (e.g. 0.7854 SAU or 0.5236 SVU) can be directly implemented in digital 
environments like CAD software, AI models, or geometry processors. They reduce floating-point 
instability and ensure scalable, predictable logic across dimensions. 

4. Real-world measurability and validation 
The GRM’s ratios can be verified through tangible methods: a ruler for perimeter, tiles for 
surface, or water displacement for volume. This bridges mathematical theory and physical 
observation, ideal for prototyping, demonstration, and classroom experiments. 

These benefits show that GRM is not just a new way to think about geometry, but a practical system ready 
to be taught, implemented, and measured; across domains and dimensions. 



This work is officially registered via i-Depot (BOIP). Reference no. 151927 – May 10, 2025. 

 

© 2025 M.C.M. van Kroonenburgh, MSc. This model may be used, shared, and cited for educational and 
non-commercial purposes with proper attribution. Commercial use, reproduction, or modification 
requires prior written permission from the author.    Version 3.1     14 
 

3. Comparison with classical geometry 

3.1 Complementary logic, not replacement 

The Geometric Ratio Model (GRM) does not seek to replace classical geometry, nor to challenge the 
foundational truths of Euclidean mathematics. Instead, it provides a complementary lens, a proportional 
framework that simplifies application, comparison, and classification in domains where abstraction 
becomes a barrier. 

Traditional geometry relies heavily on irrational constants, symbolic formulas, and internal parameters like 
radius, height, and angle. These are theoretically exact, but often inaccessible in real-world or digital 
contexts. GRM translates these classical properties into bounded ratios that can be observed, measured, 
and applied directly. 

Classical formulas remain valid; the GRM simply reframes them for a different paradigm of use. 

 

3.2 Why digital systems require a different lens 

In digital environments, geometry is not symbolic; it is rendered, visualized, segmented, compared, and 
scaled. These processes benefit not from mathematical exactness per se, but from operational consistency 
and visual clarity. 

Examples include: 

• CAD tools that operate on bounding boxes and vector scaling 

• AI vision systems that detect shape classes via pixel ratios 

• Educational platforms that teach by comparison, not derivation 

• 3D engines that require uniform volumetric logic across scales 

Here, irrational constants like π become computational artifacts, prone to approximation errors and 
incompatible with visual interpretation. GRM resolves this mismatch by offering a fixed-ratio alternative 
that aligns with how digital systems think and represent. 

 

3.3 Comparative example: Circle area 

Consider the area of a circle of radius 𝑟 =  
1

2
: 

 

• Classical formula: 

𝐴 = 𝜋𝑟2 = 𝜋 ∙  
1

4
 ≈ 0.7854 

• GRM perspective: 

𝐴 = 0.7854 𝑆𝐴𝑈 (𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑠 = 1) 

Both yield the same numerical value. But GRM makes the container explicit and the comparison scalable. 
It reveals that a circle occupies a fixed ratio (78.54%) of the square in which it is inscribed, independent of 
radius or unit. 

This shift supports geometry that is visual, relative, and self-normalizing. 
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3.4 Summary: When to use GRM 

GRM is not intended to replace symbolic reasoning, it is designed for contexts where visual proportion, 
system consistency, and dimensional scalability are more useful than internal precision. 

Table 3.4 – Classical Geometry vs GRM 

Classical Geometry Geometric Ratio Model 

Symbolic, formula-based Relational, ratio-based 

Depends on irrational constants (e.g. π) Uses fixed decimal ratios (e.g. 0.7854) 

Radius or height driven Container-relative 

Excellent for derivation Excellent for detection, scaling, classification 

Challenging in digital systems Naturally suited for digital logic 

In short: classical geometry tells you how a shape is derived. 
GRM tells you how it fits, relates, and scales, across dimensions, systems, and applications. 

4. Applications of the GRM Model 

The Geometric Ratio Model (GRM) is designed for practical use. By anchoring geometry in visible, 
scalable ratios, rather than abstract constants or internal parameters, it offers a new way to measure, 
detect, classify, and compare shapes across a wide variety of domains. 

Rather than replacing traditional mathematics, GRM serves as an operational bridge between geometric 
theory and real-world systems. 

 

Figure 5.1 – Applications of the GRM model 

 

4.1 Design and CAD integration 

In computer-aided design (CAD), engineering, and 3D modeling, spatial logic is often defined by 
bounding boxes, visual fit, and proportionality. GRM integrates seamlessly in this context: 
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• Shapes can be compared based on how much of a design cell they fill (e.g. 0.5236 SVU for a 
sphere). 

• Form validation becomes faster: does this component behave like a perfect cylinder or not? 

• Patterns, tolerances, and auto-fitting tools can be calibrated to fixed ratio bands. 

GRM provides a dimensionally consistent logic that extends naturally across planar, volumetric, and 
modular design systems. 

 

Figure 4.2 - Design and CAD Integration 

4.2 Artificial Intelligence and classification 

Shape detection in artificial intelligence, especially in image recognition and computer vision, often relies 
on segmentation and ratio-based logic. GRM provides a scalable, explainable metric: 

• A neural network can flag a 2D shape that covers ~0.7854 of a bounding square as “likely 
circular”. 

• In 3D, voxel coverage within a cube can be compared to 0.5236 SVU to test for spherical 
symmetry. 

• Tolerance bands allow for fuzzy classification (e.g. "circlish" or "close to sphere"). 

GRM enables symbol-free, structure-based classification, a powerful advantage in explainable AI (XAI) 
and low-power embedded systems. 

 

Figure 4.3 – Metaverse scene.  
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4.3 Education and didactics 

GRM supports a visual and relational understanding of geometry that is intuitive for students, especially 
those in technical, vocational, or early education tracks: 

• No radius, π, or symbolic formulas required, just concrete shapes in fixed containers. 

• Proportional reasoning becomes visible and testable using cut-outs, grids, or water. 

• Students grasp how shapes relate before learning how they are derived. 

This makes GRM a strong candidate for early geometry curricula, didactic tools, and comparative 
reasoning frameworks. 

 

Figure 4.4 - Geometry Education: Without vs. With GRM 

 

4.4 Measurement and validation 

In physical environments, GRM supports non-symbolic, observable validation of geometric identity: 

• A circle’s “circularity” can be confirmed by its area coverage within a square. 

• Physical objects can be submerged, scanned, or projected into standard frames and assessed by 
ratio. 

• Measurement becomes about fit and proportion, not symbolic calculation. 

This approach holds promise for applications in metrology, robotics, quality control, and prototyping—
especially when calibration must be visual, fast, and device-agnostic. 

 

Figure 4.4 - Measurement becomes about fit and proportion 
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4.5 Summary 

The GRM model excels where geometry needs to be: 

• interpreted, not just derived; 

• observed, not just calculated; 

• scaled, not just symbolically defined. 

It offers a single proportional language for use across design, education, artificial intelligence, digital 
modeling, and physical measurement. 

 

Table 4.5 - Overview of GRM model applications by domain 

Application 
Domain 

Measured Value 
(SPU/SAU/SVU) vs. 
Classical Approach 

Main Applications Key Features / 
Noteworthy Aspects 

Design & CAD 
Integration 

GRM uses fixed ratios instead 
of floating-point geometries or 
symbolic equations 

Form validation, 
bounding-box logic, 
tolerance classification 

Eliminates rounding errors, 
improves layout validation, 
enables shape consistency 
across designs 

Artificial 
Intelligence & 
Classification 

GRM interprets shapes based 
on occupancy ratios, not 
parametric descriptions 

Shape detection, fuzzy 
classification, deviation 
scoring 

Canonical ratios provide 
explainable AI logic; supports 
imperfect or noisy inputs 

Education & 
Didactics 

Replaces π and irrational 
values with fixed, visual ratios 
within reference frames 

Teaching proportions, 
visual logic, 
simplification of 
geometric reasoning 

Enables concrete 
understanding from primary 
to technical education; π-free 
entry into geometry 

Measurement & 
Validation 

Uses enclosure-based ratio 
logic instead of abstract 
formulaic derivation 

Physical validation, real-
world ratio estimation, 
visual prototyping 

Directly measurable using 
tape, tiles, or volume; 
supports prototyping and 
physical verification 

 

5. Limitations and scope 

No model explains everything. The strength of the Geometric Ratio Model lies precisely in its focus: it is 
not intended to replace classical geometry, but to complement it in contexts where visual structure, 
proportion, and digital logic are paramount. Recognizing both its power and its boundaries is essential to 
understanding what GRM is, and what it is not. 

5.1 Where GRM excels 

GRM reaches its full potential when geometry is not merely calculated, but seen. In environments where a 
shape’s relationship to its containing structure is more relevant than its internal measurements, GRM 
provides immediate clarity. A circle that fills 78.54% of a square communicates more than just its area; it 
reveals its identity. 

This relational thinking is especially useful in systems where geometry must be interpreted or classified, 
such as digital modeling, AI, or education. Rather than relying on radius or angle, the GRM expresses each 
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shape by how much of its container it occupies. This makes the model highly effective in settings where 
symbolic abstraction becomes a limitation, and visual measurability becomes an asset. 

Whether in the classroom, in CAD, or in AI detection systems, the GRM offers a stable, scalable, and 
human-readable geometry that performs best when precision is matched by proportional fit. 

5.2 Where GRM does not apply 

Yet GRM is not a universal tool. There are domains where symbolic reasoning, continuous derivation, or 
irrational constants remain essential. For example, the model is not suited to integral calculus, the analysis 
of conic sections, or algebraic proofs involving transcendental numbers. Where geometry must be 
expressed through parametric forms, infinite curves, or proofs based on irrational relationships, classical 
mathematics remains unmatched. 

GRM also does not attempt to describe free-form, chaotic, or topologically complex structures that defy 
enclosure within simple containers. Its logic is bounded by containment, and that is by design. The model 
is not meant for every shape, but for the many shapes that can be usefully understood in terms of what 
they occupy. 

5.3 Perfect fit and practical imperfection 

The logic of GRM assumes that shapes are perfectly inscribed, meaning the enclosed form touches the 
container at its defining boundaries. In reality, physical objects and digital shapes rarely conform with 
absolute perfection. Whether due to pixelation, noise, irregularity, or human error, forms often deviate 
slightly from the ideal. 

Rather than undermining the model, these deviations open a path for further development. In GRM, 
difference is not failure, it is signal. A shape that almost fills 0.7854 of its container may be “circular 
enough” to be classified as such. This tolerance-based reasoning forms the basis of GRM’s extension into 
classification, fuzzy logic, and AI. It accepts that identity can exist within margins, and embraces 
imperfection as a source of insight. 

5.4 Dimensional boundaries 

The GRM is currently defined within the familiar spatial dimensions: 1D, 2D, and 3D, with early 
explorations into 4D logic (e.g., time-aware or nested ratios). The model assumes Euclidean containment 
and regularity: a square contains a circle, a cube contains a sphere. 

This limitation does not reduce its utility, but it sets its scope. GRM is not (yet) designed to operate in 
non-Euclidean geometries, curved space, or dynamic topologies. Its strength lies in fixed frames, 
proportional logic, and spatial consistency. 

Future work may expand these boundaries, but the foundation remains dimensionally anchored: the 
square and the cube are not constraints, they are canvases. 

5.5 Clarity within limits 

Every model succeeds by choosing what to leave out. GRM succeeds by staying close to what is visible, 
measurable, and meaningful in real-world and digital systems. Its value is not in replacing classical 
formulas, but in giving designers, educators, and engineers a new geometric language, one based on 
relative identity, not abstract derivation. 

It is not a geometry of everything. But it may well be the geometry of how we see, scale, and structure the 
world. 
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6. Future work and extensions 

The Geometric Ratio Model is both complete in its core logic and open in its potential. While its 
foundational structure (based on fixed ratios within dimensional containers) is stable and operational, 
several promising directions remain to be explored. These extensions aim not to complicate the model, 
but to expand its utility in systems that demand flexibility, tolerance, and deeper abstraction. 

The work ahead is not about redefining the model, but about unfolding its possibilities. 

 

6.1 Toleranced classification and deviation logic 

Real-world and digital shapes are rarely perfect. Whether due to imperfect rendering, noise, hand-drawn 
deviation, or manufacturing tolerance, most shapes deviate (slightly or significantly) from ideal forms. 

To accommodate this, the GRM will be extended with tolerance bands around each canonical ratio. These 
bands will define not only what a circle is, but when a shape is close enough to be accepted as such. This 
opens the door to: 

• confidence-based shape classification, 

• fuzzy geometric recognition in AI, 

• deviation detection in quality control, 

• and probabilistic modeling in uncertain environments. 

Such extensions make the GRM more resilient to imperfection, without losing its rational core. 

 

6.2 Compound and multi-shape systems 

Many practical objects do not consist of single geometric forms, but of compound assemblies: a wheel 
with a hub, a house with a roof, a robot arm composed of cylinders and joints. The next step in GRM 
development is the introduction of modular ratio logic: 

• How does a shape composed of a hexagon + circle behave within a square? 

• Can multiple shapes be described as a total ratio of a container? 

• What is the signature of a known object (e.g., screw, chair, vertebra) in GRM terms? 

This opens the model to semantic geometry: identity derived from the combination of structural 
proportions. 

 

6.3 GRM for Artificial Intelligence 

The combination of fixed ratios, tolerance bands, and scalable logic makes GRM a natural fit for AI-
driven shape detection and classification. Future work will focus on: 

• JSON schema development for ratio-based geometry, 

• plugin integration with CAD, AI, and design tools, 

• creation of a ratio-first dataset for supervised learning, 

• and explainable AI metrics based on geometric identity. 
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These steps will bring GRM from theoretical model to functional toolset, ready to be implemented in 
digital vision pipelines. 

6.4 Dimensional expansion and quantum reasoning 

Although the current model focuses on 1D–3D logic, preliminary work explores GRM’s potential in 
higher-dimensional abstraction. In quantum geometry, for example, where certainty dissolves and 
observation defines the system, GRM may offer a relational and observer-centric framework. 

Similarly, in digital twin systems and simulation engines, time and ratio may converge into 4D proportion 
systems, where stability is derived not from position, but from containment and continuity. 

This frontier remains speculative, but promising. 

6.5 Towards a proportional geometry paradigm 

What begins as a new model of measurement may evolve into a new way of thinking about geometry 
itself. In this vision, the square and the cube are not just practical frames, but reference bodies for 
relational structure. Measurement becomes not about exactness, but about how one thing fits within 
another, across dimensions. 

As GRM continues to grow, it invites researchers, educators, developers, and designers to ask not only 
what something is, but how much of its space it truly occupies. 
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Appendix A – GRM figures and visual standards 

This appendix provides key visual references that support the geometric definitions and ratio logic 
described in the Geometric Ratio Model (GRM). Each diagram illustrates a standardized GRM 
configuration based on perfectly inscribed shapes within bounding squares or cubes. The figures are 
intended to support practical application, validation, and didactic clarity. 

 

Figure A.1 — SPU Ratio and Radius Visualization for a Circle 

This figure shows a square (ABCD) with an inscribed circle that touches all four sides. This configuration is the foundation for the 
Square Perimeter Unit (SPU) in the GRM model. 

The black square has a perimeter defined as 1 SPU (4s). 

The red circle has a perimeter of ≈ 0.7854 SPU (π/4 of the square). 

The blue radius is exactly 0.1250 SPU, derived as r = s / 2 when the square’s perimeter is 1 SPU (implying s = 0.25). 

Interpretation: 
These ratios are only valid when the circle satisfies the original structural definition of a GRM-conforming shape: it must be perfectly 
inscribed, centered, and touching all sides of the square. If these conditions are not met, the values lose geometric validity. 

This visual standard reinforces the GRM’s key principle: ratios represent not just numeric values, but precise shape-to-container 
relationships. 
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Appendix A.1 – Shape extensions: triangle and hexagon 

The following figures illustrate two additional GRM-compatible shapes, an isosceles triangle and a regular 
hexagon, perfectly inscribed within a square. Each configuration adheres to the GRM principle of 
geometric containment and yields a fixed area ratio relative to the enclosing square. These standardized 
forms support proportional classification and are suitable for shape-based analysis, construction, and AI 
detection tasks. 

 

 
Figure A.1.1 – isosceles Triangle Inscribed in a Square 
A perfectly centered isosceles triangle is inscribed within a square. Its base spans the full bottom edge of the square, and its apex touches 
the midpoint of the top edge. This configuration satisfies the GRM requirements of symmetry and structural fit, resulting in a fixed area 
ratio of ≈ 0.4330 SAU. 

 
Figure A.1.2 – Regular Hexagon Inscribed in a Square 
The regular hexagon is symmetrically placed within the square such that its top and bottom edges align horizontally, and all vertices 
remain within the container. This configuration preserves full symmetry and reproducibility, yielding a GRM area ratio of ≈ 0.8660 
SAU. 

  



This work is officially registered via i-Depot (BOIP). Reference no. 151927 – May 10, 2025. 

 

© 2025 M.C.M. van Kroonenburgh, MSc. This model may be used, shared, and cited for educational and 
non-commercial purposes with proper attribution. Commercial use, reproduction, or modification 
requires prior written permission from the author.    Version 3.1     24 
 

Appendix B – The regular hexagon as an extension within 

the Geometric Ratio Model 

B.1 Introduction 

The Geometric Ratio Model (GRM) builds on standard shapes such as the square, circle, and sphere to 
express ratios across various dimensions. This appendix expands the model by incorporating a highly 
symmetrical and widely used geometric shape: the regular hexagon. 

This addition does not alter the model’s core structure, but rather demonstrates its extensibility to other 
shapes that can be inscribed within the standard framework. In the future, other polygonal or polyhedral 
forms may be explored similarly. 

 

B.2 Ratios of perimeter and area 

Perimeter 

The perimeter of a regular hexagon is given by: 

𝑃ℎ𝑒𝑥 = 6𝑎 

where 𝑎 is the side length of the hexagon. When the hexagon is inscribed within a square of side 𝑠, its 

optimal side length is 𝑎 =  
𝑠

√3
, leading to: 

𝑃ℎ𝑒𝑥 =  
6𝑠

√3
  ≈ 3.464𝑠 

The perimeter of the square is: 

𝑃𝑠𝑞𝑢𝑎𝑟𝑒 =  4𝑠 

The ratio of the hexagon’s perimeter to that of the square—referred to as Hexagon-SPU—is: 

𝐻𝑒𝑥𝑎𝑔𝑜𝑛 − 𝑆𝑃𝑈 =  
𝑃ℎ𝑒𝑥

𝑃𝑠𝑞𝑢𝑎𝑟𝑒
=

6

4√3
=  

3

2√3
 ≈ 0.8660 
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Area 

The area of a regular hexagon is given by: 

𝐴ℎ𝑒𝑥 =  
3√3

2
𝑎2 

  

Substituting 𝑎 =
𝑠

√3
 

𝐴ℎ𝑒𝑥 =
3√3

2
= (

𝑠2

3
) =

√3

2
𝑠2 ≈ 0.8660𝑠2 

The area of the square is 𝑠2, thus the Hexagon-SAU becomes: 

𝐻𝑒𝑥𝑎𝑔𝑜𝑛 − 𝑆𝐴𝑈 =  
𝐴ℎ𝑒𝑥

𝑠2
=  

√3

2
 ≈ 0.8660 

 

B.3 Summary of ratios 

The regular hexagon exhibits a unique symmetry within the GRM model: both its perimeter and area 
amount to approximately 86.60% of the square in which it is inscribed. 

Table B.1 – GRM Hexagon 

Quantity Ratio Relative to the Square Approximate Value 

Perimeter 3

2√3
 

≈ 0.8660 

Area √3

2
 

≈ 0.8660 

This symmetrical correspondence is noteworthy. Unlike the circle (where perimeter and area ratios differ), 
the hexagon maintains a consistent ratio across both dimensions. This makes it particularly useful in 
applications where both space coverage and edge length matter, such as in honeycombs, crystalline 
structures, and digital tessellations. 

 

B.4 Future extension: The hexagonal prism 

The next logical extension is to explore the hexagonal prism, a three-dimensional solid with a hexagonal 
base and vertical height. This form is prevalent in engineering and structural contexts. Within the GRM 
model, it could be compared to a cube that fully encloses it, similar to how a sphere is analyzed in relation 
to the cube. The volume ratio of such a prism would potentially lead to a new SVU variant, one suited to 
hexagonal geometry. 
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B.5 Conclusion 

Adding the regular hexagon to the GRM model demonstrates the model’s flexibility beyond circular 
forms. The consistent ratio of approximately 0.8660 for both perimeter and area highlights the hexagon’s 
geometric elegance and its potential for broader application. 

This appendix provides a foundation for further exploration of additional shapes and dimensions within 
the SPU framework. The inclusion of polygonal and polyhedral forms reinforces the model’s value as a 
scalable and intuitive metric system. 
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Appendix C – Shape classification in GRM context 

One of the most promising extensions of the Geometric Ratio Model is its capacity to support toleranced 
classification. Rather than defining shapes solely by their formulas or labels, GRM introduces a framework 
where shapes are understood by how much of a container they occupy, enabling graded identification 
even in noisy or imperfect conditions. 

This approach is particularly useful in digital vision systems, AI classification, and low-resolution 
environments, where precise symbolic parameters (like radius or side length) may not be reliably extracted. 
Instead, GRM enables shape classification through ratio proximity and confidence zones. 

 

Canonical vs. approximate identity 

In the table below, we present an example of ratio-based shape classification, using surface ratios 
(SAU) for 2D shapes inscribed in a unit square. 

Each row represents a different identity zone: 

• Canonical: the shape fits the square perfectly according to its geometric definition. 

• Near-canonical ("-ish"): the shape approximates the canonical value closely, often within a 
tolerance band (e.g., ±0.03). 

• Other: the ratio deviates significantly and suggests either noise, compound forms, or 
indeterminate identity. 

Table C.1 - Canonical vs. Approximate Identity 

Ratio Range 
(SAU) 

Interpreted Shape Classification Notes 

0.7854 Circle Canonical Exact fit; π/4 of square area 

~0.75–0.78 Circular-ish Approximate Slight deformation or resolution loss 

~0.72–0.74 Rounded triangle Transitional May suggest curved triangle or ellipse 

~0.64–0.66 Hexagon Canonical Regular hexagon inscribed in square 

~0.60–0.63 Hexagon-ish Approximate Asymmetric or slightly rotated hexagon 

~0.42–0.44 Equilateral triangle Canonical 60° triangle with full contact 

< 0.40 Triangle-ish or 
partial 

Degraded/Unknown Possibly non-inscribed, incomplete or 
compound 

 

Classification as confidence gradient 

This logic allows for confidence scoring: a shape with a measured SAU of 0.783 is highly likely to be a 
circle; one with 0.751 may still be circular enough for classification, depending on context. By defining 
tolerance bands around canonical ratios, GRM supports flexible identity labeling, ideal for fuzzy systems, 
computer vision, or didactic approximation. 

The model does not enforce strict binary logic but instead encourages graded interpretation. This makes it 
applicable in both deterministic (e.g., design validation) and probabilistic (e.g., AI detection) contexts. 
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Future extensions 

This appendix represents an early example of GRM-based classification logic. In whitepaper E-1, we 
explore how these tolerances can be formalized, embedded in systems, and connected to use cases in 
manufacturing, pattern recognition, and shape-based retrieval. 

GRM thus offers not only a language for geometric identity, but also a logic for structural resemblance 
and deviation. 
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Appendix D – Related models and inspiration 

While the Square Perimeter Unit (SPU) model offers a unique and independently developed framework, it 
is part of a broader movement in geometry that seeks alternative approaches to describing shapes, 
proportions, and circular structures without relying on the traditional use of π. The following sources 
illustrate similar ideas or complementary lines of thought: 

Hartl, M. (2010). The Tau Manifesto 

A manifesto advocating for the use of the constant τ (tau = 2π) as a more intuitive alternative to π. Hartl 
argues that many mathematical formulas become simpler and more elegant when τ is used, particularly in 
circular geometry. 

Website: www.tauday.com 

OSF Preprints (2023). A Circle Without Pi 

This preprint introduces an alternative framework for understanding the circle, emphasizing ratio-based 
relationships without the use of π. The focus is on visual and relational properties of circles within fixed 
geometric containers. 

Link: https://osf.io/preprints/osf/stwxf 

Monte Carlo Approaches to Estimating Circle Area 

In probabilistic mathematics, it is possible to estimate the area of a circle without directly using π. Monte 
Carlo simulations, where random points are placed inside a square, can statistically approximate π as a 
ratio of filled space. 

See, for example, related discussions on Reddit Math that explore various methods. 

 

Reflection 

These sources demonstrate that the idea of replacing or reformulating π is not isolated, but part of a 
broader exploration of simplicity, intuition, and measurability in geometry. The GRM model aligns with 
this movement by offering a systematic, visual, and scale-free approach centered on fixed ratios within 
standard shapes such as the square and the cube. 

The model distinguishes itself by emphasizing didactic clarity, physical reproducibility, and dimensional 
consistency, making it a bridge between classical mathematics and modern practical applications. 
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