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Summary 


This document introduces the GRM model as a scale-free, visually robust, and 
dimensionally consistent approach to geometry.  


The model replaces abstract irrational constants, such as π, with fixed ratios within 
standard shapes (square and cube) and offers applications in education, engineering, 
visualization, design, and systems thinking.  


It is both didactically accessible and theoretically scalable to higher dimensions. 
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1. Introduction and Core Vision 


1.1 Background 
The mathematical constant π (pi) has served as the cornerstone for calculating the 
circumference and area of circles for centuries. While its definition as the ratio of a 
circle's circumference to its diameter is mathematically indisputable, its application in 
education, geometry, and digital contexts presents inherent limitations: it is an irrational 
number that cannot be precisely noted in decimal form and is only indirectly 
measurable. For many, π remains an abstract concept, disconnected from tangible 
reality. 


1.2 Purpose and Motivation 
The purpose of this GRM model is to propose an alternative to the use of π as the 
foundational constant in geometry by describing shapes in relation to a concrete, 
universally measurable standard: the line in a square (for 1D), the plane of the square 
(for 2D), and the volume of the cube (for 3D). The proposed approach uses these 
standards as reference units for circumference, area, and volume. 


The core concept is both simple and powerful: When a circle is precisely inscribed 
within a square, the ratio of the circle's circumference to that of the square is exactly π/4 
≈ 0.7854. This ratio is no longer regarded as a coincidental consequence of π but as a 
definable unit: the Square Perimeter Unit (SPU). Similarly, the circle’s area and the 
sphere’s volume can be expressed as fixed ratios relative to the square’s area (Square 
Area Unit, SAU) and the cube’s volume (Square Volume Unit, SVU). 


1.3 Core Vision 
The GRM model proposes that geometric shapes no longer be described exclusively in 
absolute units or via irrational constants, but through relative ratios within a fixed metric 
structure. This results in a scale-free, consistent, and dimensionally extendable system 
where: 


• The circumference of a circle is expressed as π/4 ≈ 0.7854 SPU 
• The area of the same circle is expressed as π/4 ≈ 0.7854 SAU 
• The volume of an inscribed sphere is expressed as π/6 ≈ 0.5236 SVU 


This model is not intended as a replacement for π in classical mathematics but as a 
practical approach within educational, digital, and geometric contexts where practical 
proportions and measurability are paramount. By reformulating π as a derived ratio 
within a measurable standard, this model allows for a new perspective on shape, 
volume, and proportion. 
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Positioning within the geometric tradition 
The Square Perimeter Unit model is rooted in classical geometric principles but 
reformulates them in a way that meets modern demands for simplicity, scalability, and 
measurability. By moving away from abstract constants like π and instead using fixed 
ratio units within standard shapes, it offers a new perspective on geometry that is both 
visually intuitive and practically applicable. 


1.4 Outlook on Higher Dimensions 
Although the GRM model primarily focuses on the first three spatial dimensions in this 
document, there is a clear opportunity for extension into higher dimensions. The ratios 
between inscribed hyperspheres and hypercubes are similarly definable, measurable 
(via analogies), and consistent within the VE-n framework. Thus, the model has the 
potential to evolve into a universal, dimensionally scalable measurement system that 
transcends classical space. 


The following chapters will elaborate on this model step by step, tested through 
practical applications, geometric considerations, and theoretical reflections. 


2. Foundations of the GRM Model 


2.1 The Standard Form: The Square and the Cube 
*In this chapter, the notation 𝑠 is used to denote the length of one side of a square or 
cube. This convention is common in geometry and serves as the basis for the standard 
formulas within the GRM model. 


The cornerstone of the GRM model is the selection of the square (in 2D) and the cube (in 
3D) as universal measurement units. These shapes are not only simple to construct and 
measure, but also function as natural frameworks within which other geometric forms 
can be enclosed. The square structure enables exact and consistent proportions to be 
defined for measurements of length (1D), area (2D), and volume (3D). 


In the GRM model: 


• The perimeter of the square is defined as 1 SPU 
• The area of the square is defined as 1 SAU 
• The volume of the cube is defined as 1 SVU 


These units serve as reference points for all relative measurements within this model. 
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Overview Table: Standard Ratios in the GRM Model 


Dimension Measurement 
Aspect 


Standard 
Shape 


Formula (s=1) Ratio Unit 


1D Length 
(perimeter) 


Square 4𝑠 1 1 SPU 


2D Area Square 𝑠² 1 1 SAU 
3D Volume Cube 𝑠³ 1 1 SVU 


 
Supplementary Overview: Ratios in Standard and Inscribed Shapes 


The table below provides fixed ratios between standard shapes (square, cube) and their 
inscribed forms (such as circle and sphere), with a side length of s = 1. The values are 
normalized relative to the square or cube enclosing the form. This overview enhances 
understanding of how SPU, SUA, and SVU function as universal measurement ratios 
within the model. 


Dimension Measurement 
Aspect 


Standard 
Shape 


Formula (where s 
= 1) 


Ratio Unit 


1D Perimeter 
(Length) 


Square 4 . 𝑠 = 4 1 1 SPU 


2D Area Square 𝑠2 = 1 1 1 SAU 
3D Volume Cube 𝑠3 = 1 1 1 SVU 
2D Circle 


(Inscribed) 
Circle 𝜋 . 𝑑 =  𝜋 (𝑑 = 𝑠 = 1) 𝜋/4 ≈ 


0.7854 
SPU/SAU 


3D Sphere 
(Inscribed) 


Sphere 4


3
𝜋𝑟3 (𝑟 = 0,5)  𝜋/6 ≈ 


0.5236 
SVU 


 


2.2 Enclosed Shapes as Fixed Ratio Carriers 
When a geometric shape is perfectly inscribed within the standard form (square or 
cube), it generates fixed proportions independent of absolute dimensions. For a circle 
with a diameter equal to the side length of the square: 


• Circle perimeter: 𝐶 = πd = π𝑠 


• Square perimeter: 𝐶 = 4𝑠 


• Ratio: π/4 ≈ 0.7854 SPU 


The same logic applies to area and volume: 


• Circle area relative to square: π/4 ≈ 0.7854 SAU 
• Sphere volume relative to cube: π/6 ≈ 0.5236 SVU 
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This enables circles, spheres, and other shapes to be compared geometrically and 
metrically without relying on irrational numbers. 


Note: In this context, 𝑠 equals the diameter of the circle, as the circle is perfectly 
inscribed within the square. The formula 𝐶 = π𝑠 is correct as long as 𝑠 is interpreted as 
both the side length of the square and the diameter of the circle. In situations where 𝑠 
traditionally represents the radius, the formula would naturally become 𝐶 = 2π𝑠. 


2.3 Dimensional Consistency: 1D–2D–3D 
The strength of the GRM model lies in its internal consistency across dimensions: 


• In 1D, the perimeter of the square forms the baseline: any linear structure can be 
related to the square perimeter. 


• In 2D, the area of the square serves as the comparative plane. 
• In 3D, the volume of the cube becomes the benchmark for volumetric ratios. 


Since circles, spheres, and other shapes are consistently placed within the same 
standard framework, a coherent system of ratios emerges that remains consistent 
across all dimensions. 


2.4 Measurability and Visualizability 
Unlike π, which is an abstract and immeasurable constant, the ratios within the GRM 
model can be visually and physically approximated. They can be experimentally 
determined using measuring tapes, surface tiles, or water displacement (for volume). 
This makes the model not only suitable for theoretical applications but also for 
educational purposes, didactics, and digital shape analysis. 


2.5 Precision and Error Margins 
Practical Accuracy within the GRM Model 


One of the core advantages of the Geometric Ratio model (GRM) is its use of fixed ratio 
units—such as SPU, SAU, and SVU—instead of irrational constants like π. While π is 
represented in classical geometry as an infinite, non-repeating decimal, the GRM model 
uses rounded values that are more than sufficiently accurate for applications in 
education, design, visualization, and engineering. 


The key ratios used in the GRM model are: 


• 
𝜋


4
 ≈ 0.7854 → SPU / SAU (for the circumference and area of an inscribed circle) 


• 
𝜋


6
 ≈ 0,5236 → SVU (for the volume of an inscribed sphere) 
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Though these values are approximations, the actual absolute error in practical use is 
negligibly small. 


 


 


Comparison: Classical π vs. SPU Ratios 


Example 1: Circumference of a circle inscribed in a square (s = 1) 


Method Formula Value Absolute Error 


Classical 𝐶 =  𝜋𝑠 3.1416 — 


GRM model 𝐶 = 4 ⋅ 0.7854 3.1416 ≈ 0.0000 


Identical to four decimal places. The error appears only after the fifth decimal. 


Example 2: Area of an inscribed circle 


Method Formula Value Absolute Error 


Classical 𝐴 =  𝜋𝑠2/4 0.7854 — 


GRM model 𝐴 = 0.7854 ⋅  𝑠2 0.7854 0 


Numerically identical in practical terms. 


Example 3: Volume of a sphere inscribed in a cube (s = 1) 


Method Formula Value Absolute Error 


Classical 𝑉 =  𝜋𝑠3/6 0.5236 — 


GRM model 𝑉 = 0,5236 ⋅  𝑠2 0.5236 0 


 


What Does This Offer? 


1. Faster Calculations 


By using fixed ratios, there’s no need for π-based calculations or approximations. 
A single multiplication factor suffices—saving time and minimizing human or 
computational error. 


2. Simplification in Education and Training 


Students and learners can work with concrete values instead of abstract 
constants. This makes geometry more approachable, especially in primary 
education or technical training contexts. 
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3. Consistency in Digital Systems 


Fixed ratio values like 0.7854 (SPU/SAU) and 0.5236 (SVU) can be directly 
implemented in programming, CAD systems, or AI models—without floating-
point errors from irrational constants. 


 


4. Real-World Measurability 


The ratios are physically verifiable using measuring tape, surface tiles, or water 
displacement. This bridges the gap between mathematical models and the 
tangible world—ideal for experimentation, physical prototyping, or didactic 
demonstrations. 


Conclusion 


Although the GRM model uses rounded ratio units rather than formal mathematical 
constants, the resulting deviation in practical applications is negligibly small. The error 
margins lie well within tolerances used in education, design, and engineering. This 
makes the model a powerful alternative for contexts where clarity, reproducibility, and 
consistency matter more than mathematical perfection to the nth decimal. By 
combining simplicity with practical precision, the GRM model provides a robust and 
efficient metric for geometric reasoning. 


3. Comparison with the Classical π Approach 


3.1 The Role of π in Classical Geometry 
The mathematical constant π is defined as the ratio between the circumference of a 
circle and its diameter. It is an irrational number, with a non-terminating and non-
repeating decimal representation, approximately equal to 3.14159. In classical 
geometry, π is indispensable for calculating the circumference and area of circles and 
plays a central role in the analysis of spheres, cylinders, cones, and other rounded 
forms. 


While mathematically exact, π poses certain limitations in practical applications: 


• It cannot be expressed exactly in decimal notation. 
• Its use necessitates rounded approximations for numerical computations. 
• It is abstract and not directly measurable in physical reality. 


These characteristics render π less accessible in didactic environments and in contexts 
requiring simplicity and measurability, such as digital frameworks. 
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3.2 The SPU Perspective: Ratio Instead of a Constant 
The GRM model reframes the problem by replacing the abstract constant with a 
concrete ratio within a standardized form. For a circle inscribed within a square, the 
following applies: 


SPU = circumference of circle / circumference of square = π𝑠 / 4𝑠 = π / 4 ≈ 0.7854 


𝑆𝑃𝑈 =
𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑛𝑐𝑒 𝑜𝑓 𝑐𝑟𝑖𝑐𝑙𝑒


𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑛𝑐𝑒 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒
=


𝜋𝑠


4𝑠
=


𝜋


4
 ≈ 0.7854 


The traditional value of π is thus reduced to a ratio within a measurable structure. This 
substitution transforms π from a constant into a direct relationship between an 
enclosed shape and its surrounding framework. This shift provides the following 
advantages: 


• It is measurable (using tape, software, simulation, or physical models). 
• It is comparable (across different shapes within a single standard). 
• It is dimensionally consistent (extendable to area and volume). 
• It is didactically transparent (students observe the ratio rather than an abstract 


symbol). 


3.3 Considerations and Limitations 
While the GRM model offers significant benefits, it is essential to recognize that it does 
not replace π as a universal mathematical constant. Classical mathematics and 
analytical geometry remain fundamentally based on π. 


The GRM model should be understood as: 


• A practical reformulation for specific contexts. 
• An alternative representation of ratios rather than a substitute for π. 
• Most effective in scenarios requiring visual, physical, or relational interpretations 


of geometry. 


3.4 Conclusion 
The comparison with the classical π approach demonstrates that the GRM model is a 
valuable addition to the mathematical toolkit. By emphasizing ratios within measurable 
frameworks, the model proposes a novel approach to geometry—one that prioritizes 
relational measurability over abstract constants. This makes it particularly suitable for 
educational purposes, digital applications, and multidimensional analyses. 
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4. Applications of the GRM Model 


4.1 Education and Didactics 
The GRM model provides an accessible and visually compelling way to concretize 
abstract concepts such as circumference, area, and volume. By consistently relating 
shapes to a square or cube with known dimensions, it creates a natural context for 
understanding and comparison. Rather than familiarizing students with an irrational 
constant like π, the model allows them to observe, measure, and comprehend ratios 
within a tangible framework. 


This approach aligns with educational principles such as experiential learning and visual 
reasoning. For example, a lesson could be designed where students cut out circles, fit 
them into squares, and then measure the ratio of the circumference to the square using 
a string. For understanding volume, a sphere can be submerged in a measuring cylinder 
or water tank to experimentally determine its ratio to the cube’s volume. In this way, 
abstract geometry is transformed into experiential understanding. 


Added Value Compared to the Classical Approach: 


While classical geometry is rooted in abstract constants like π, the GRM model offers an 
alternative grounded in relative, directly measurable proportions within a fixed 
framework. This not only allows for a mathematical understanding but also enables a 
visible and tangible structure. By using standard shapes such as the square and the 
cube as references, the method becomes more intuitive, visually compelling, and better 
suited to practical contexts such as education, simulation, design, and data analysis. 


Didactic Anchoring in Educational Principles: 


The GRM model integrates well into educational frameworks emphasizing experiential 
and relational learning. It aligns with holistic education, where knowledge is constructed 
through sensory and meaningful interaction with the world, and with constructivist 
approaches, where students build knowledge by exploring and comparing. The model 
also complements modern STEM/STEAM approaches, which connect mathematics to 
technology, art, and design. This makes it a robust foundation for integrated learning, 
engaging spatial reasoning, logic, and creativity. 


Educational Applications: 


• Circle comprehension without π: students measure the circumference of a circle 
and the square in which it fits. 


• Visualizing area and volume as fixed ratios within a standard shape. 
• Developing didactic materials based on SPU/SAU/SVU to enhance conceptual 


understanding. 
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4.2 Digital and Geometric Applications 
In digital environments, CAD software, and graphic simulations, systems often operate 
on raster, grid, or pixel-based frameworks. The GRM model seamlessly integrates into 
these systems as it employs fixed, measurable units and relative proportions. 


In digital applications involving shape recognition, simulation, or CAD design, the GRM 
model allows geometry to be addressed not in absolute pixels or millimeters but relative 
to a standard shape. For instance, an AI algorithm may classify objects based on their 
relative 'filling' of a square (SPU) or a cube (SPU), regardless of their absolute 
dimensions. Graphic engines can also use SPU to scale or anchor shapes within grid 
structures automatically, enhancing accuracy and consistency in user interfaces or 
game design. 


Added Value Compared to Current Methodology: 


Most digital systems approach shapes through absolute coordinates or pixels, without 
explicitly considering their relative geometric structure. This limits the scale-
transferability of shape recognition across contexts. The GRM model introduces 
normalization, where proportions within a fixed standard (square or cube) take 
precedence, making shapes scale-independent, system-neutral, and dimensionally 
comparable. This improves the robustness, generalizability, and intuitiveness of 
algorithms, especially in AI applications such as object recognition or pattern analysis. 


Potential Applications in Digital Contexts: 


• Shape recognition through fixed proportions (e.g., AI-based geometric 
classification). 


• Scale-free comparisons between objects in 2D or 3D renders. 
• Interactive measurement modules where objects are always placed within a 


square or cube. 


4.3 Design, Engineering, and Visualization 
In technical domains such as product design, engineering, and construction, the ability 
to relate shapes to standard dimensions is crucial. The GRM model provides a 
consistent framework for this purpose. 


In design and engineering, speed and precision are essential. The GRM model enables 
designers to quickly compare complex objects to a standard shape. For example, an 
industrial designer might express the ratio between a spherical reservoir and the cube in 
which it fits in SPU to gain immediate insight into residual volume or utilization rate. In 
visualization processes, the difference between a square and an inscribed circle 
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(residual shape) can be used to optimize material efficiency or generate artistic forms 
with consistent proportional structures. 


Added Value Compared to Current Methodology: 


In many design and engineering environments, shapes are evaluated based on absolute 
dimensions, areas, or volumes, often using traditional units like millimeters or cubic 
centimeters. This approach requires context-specific interpretation and is less suitable 
for quick relative comparison. In contrast, the GRM model enables direct work with 
proportions relative to a fixed standard, allowing for faster, more visual decision-making. 
This lowers cognitive load and facilitates communication between designers, engineers, 
and clients about scale, utilization, or shape efficiency. 


Applications in Design and Engineering: 


• Faster ratio analyses during prototyping and scale modeling. 
• Ability to relate complex shapes to easily constructed base dimensions. 
• Visualization of residual shapes and content distribution based on differences 


with the standard. 


4.4 Interdisciplinary Potential 
The GRM model is not limited to mathematical or geometric applications. 


Since the model is based on the ratio between a shape and its enclosing standard, it 
offers a universal principle applicable beyond classical geometry. In visual arts, 
designers can create compositions where shapes occupy an exact percentage of a 
square or cube, leading to harmony or tension in a piece. In physics, the model provides 
a framework for quantifying relative filling (e.g., in molecular structures or packing 
density). In philosophy or systems theory, SPU can serve as a metaphor for bounded 
systems where entities are analyzed based on their relationship to the whole in which 
they operate. 


Added Value Compared to Current Methodology: 


Many disciplines work with abstract models or relative approaches but lack a clear, 
geometrically anchored standard to frame proportions, structures, or relationships. The 
GRM model fills this gap by offering a consistent, visually, and computationally 
manageable reference framework that is both quantitatively and qualitatively useful. 
This enables the integration of geometric insights into systems thinking, aesthetic form 
analysis, or scientific interpretations of spatial relationships—without reliance on 
irrational constants or context-dependent measurement systems. 


Because it is rooted in measurable frameworks and proportions, the GRM model is 
relevant for: 
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• Art and design (shape composition within fixed frameworks). 
• Physics and chemistry (relative filling degrees). 
• Philosophy and systems thinking (relational reasoning within fixed structures). 


4.5 Summary 
The GRM model offers a novel way of considering geometric shapes: not as isolated 
objects but as relationships within a standardized framework. This results in a versatile 
method suitable for education, simulation, design, and analysis. The exploration of 
applications in this chapter demonstrates that the model is not only mathematically 
robust but also didactically and technically valuable. 


Future phases will focus on translating these insights into concrete implementations in 
educational modules, digital tools, and design systems. Methodological and didactic 
justification for this translation will also be addressed. 


4.6 Table: Overview of GRM model applications by domain 
Application 
Domain 


Measured Value 
(SPU/SAU/SVU) 
vs. Classical 
Approach 


Main Applications Key 
Features/Noteworthy 
Aspects 


Education Fixed proportions 
instead of 
irrational numbers 
like π 


Experiential 
measurement, 
didactic materials, 
visual reasoning 


Aligns with holistic, 
constructivist, and 
STEAM education 


Digital Systems Normalization 
within a standard 
shape instead of 
absolute 
coordinates 


Shape recognition, 
CAD, scale-free 
comparisons 


Provides scale-
independent 
classification and AI 
compatibility 


Engineering & 
Design 


Relationship to 
cube or square as 
a standard for 
content and shape 


Residual volume, 
material efficiency, 
visual design 


Simplifies 
communication and 
optimization during 
prototyping 


Art & Design Composition 
based on fixed 
proportions 
relative to canvas 
or space 


Geometric 
balance, 
aesthetics, visual 
rhythm 


Can be applied 
intuitively without 
mathematical 
expertise 


Systems Thinking 
& Philosophy 


Relationships 
within bounded 
systems 
(metaphor) 


Structural models, 
relational 
reasoning 


Suitable for 
metaphorical or 
model-based 
approaches to reality 
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5. Deepening, Reflection, and Future Vision 


5.1 Reflection on the model and its principles 
The GRM model emerged from the desire to reformulate geometric proportions in a 
manner that is both concretely measurable and didactically comprehensible. By moving 
away from abstract constants such as π and instead utilizing fixed ratios within standard 
shapes (square, cube), the approach anchors itself in physical reality while remaining 
accessible for diverse applications. Reflection on the core principles reveals that the 
model is consistent, scale-independent, and dimensionally extensible without losing its 
simplicity. 


At the same time, it is important to acknowledge its limitations: the model is not 
intended to replace classical mathematics but to serve as an additional method of 
reasoning and application. The strength lies in its relational and measurable nature, 
rather than absolute precision or formal generalization. The value of the GRM model, 
therefore, resides in its applicability within contexts emphasizing insight, overview, and 
comparative understanding. 


5.2 Research Questions and Areas of Exploration 
The model raises several questions that warrant further mathematical and didactical 
investigation: 


• How robust are the fixed ratios (e.g., 𝜋
4


 and 𝜋
6


)) in applications to complex shapes? 


• To what extent is the model applicable within non-Euclidean or digital 
geometries? 


• Can SPU, SAU, and SVU also serve as alternative vector representations in AI 
models? 


• How can educational modules be designed to enable students to discover SPU 
ratios on their own? 


These questions serve as a foundation for further theoretical and practical elaboration 
of the model. 


5.3 Toward a Universal Metric 
The GRM model offers opportunities for extension into higher dimensions (SB-n). This 
potential paves the way for a unified description of enclosed shapes within standard 
structures, independent of dimension level. By calculating the fixed ratio between 
hyperspheres and hypercubes, a continuum of measurement units emerges based on 
fixed structures rather than irrational constants. 
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This approach could lead to an alternative metric that is: 


• Scale-independent; 
• Widely applicable within digital analysis, simulation, and systems thinking; 
• Understandable to both technical and non-technical users. 


Note: The model can be extended to higher dimensions. For example, the ratio of an 


enclosed 4D sphere relative to a 4D hypercube equals  𝜋
2


32
≈ 0.3084. This ratio is referred to 


as VE4 and forms the logical continuation of SPU (1D), SAU (2D), and SVU (3D). 


5.4 Implementation Prospects 
In future iterations, research will focus on integrating the GRM model into: 


• Educational modules for primary and secondary education; 
• Calculation tools and CAD systems; 
• AI models centered on shape recognition; 
• Visualization and communication tools for design and analysis. 


These applications require interdisciplinary collaboration, spanning fields such as 
mathematics, engineering, educational science, design, and computer science. A 
phased implementation — starting with pilot projects in education and simple software 
tools — appears a logical first step. 


5.5 Concluding Remarks 
The GRM model offers an original, visually compelling, and substantively robust 
approach to geometry. By reformulating abstract relationships into concrete ratios 
within standard shapes, geometry becomes not only more comprehensible but also 
more applicable. Its strength lies in its simplicity, consistency across dimensions, and 
potential for expansion. In an era where education, technology, and digital systems 
increasingly demand integration and intuition, the GRM model may contribute to a new 
way of thinking about shape, proportion, and measurement. 


Future Additions 
This initial version of the white paper has intentionally limited illustrations, tables, and 
visualizations. In a future edition, supportive figures will be added to visually clarify the 
fixed ratios within the GRM model. These will include representations of the SPU, SAU, 
and SVU principles, as well as additional forms like the hexagon and potential 3D 
extensions.  
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Appendix A – The Regular Hexagon as an Extension 
Within the Geometric Ratio Model 


A.1 Introduction 
The Geometric Ratio Model (GRM) builds on standard shapes such as the square, circle, 
and sphere to express ratios across various dimensions. This appendix expands the 
model by incorporating a highly symmetrical and widely used geometric shape: the 
regular hexagon. 


This addition does not alter the model’s core structure, but rather demonstrates its 
extensibility to other shapes that can be inscribed within the standard framework. In the 
future, other polygonal or polyhedral forms may be explored similarly. 


 


A.2 Ratios of Perimeter and Area 
Perimeter 


The perimeter of a regular hexagon is given by: 


𝑃ℎ𝑒𝑥 = 6𝑎 


where 𝑎 is the side length of the hexagon. When the hexagon is inscribed within a square 


of side 𝑠, its optimal side length is 𝑎 =  
𝑠


√3
, leading to: 


𝑃ℎ𝑒𝑥 =  
6𝑠


√3
  ≈ 3.464𝑠 


The perimeter of the square is: 


𝑃𝑠𝑞𝑢𝑎𝑟𝑒 =  4𝑠 


The ratio of the hexagon’s perimeter to that of the square—referred to as Hexagon-SPU—
is: 


𝐻𝑒𝑥𝑎𝑔𝑜𝑛 − 𝑆𝑃𝑈 =  
𝑃ℎ𝑒𝑥


𝑃𝑠𝑞𝑢𝑎𝑟𝑒
=


6


4√3
=  


3


2√3
 ≈ 0.8660 
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Area 


The area of a regular hexagon is given by: 


𝐴ℎ𝑒𝑥 =  
3√3


2
𝑎2 


  


Substituting 𝑎 =
𝑠


√3
 


𝐴ℎ𝑒𝑥 =
3√3


2
= (


𝑠2


3
) =


√3


2
𝑠2 ≈ 0.8660𝑠2 


The area of the square is 𝑠2, thus the Hexagon-SAU becomes: 


𝐻𝑒𝑥𝑎𝑔𝑜𝑛 − 𝑆𝐴𝑈 =  
𝐴ℎ𝑒𝑥


𝑠2
=  


√3


2
 ≈ 0.8660 


 


A.3 Summary of Ratios 
The regular hexagon exhibits a unique symmetry within the GRM model: both its 
perimeter and area amount to approximately 86.60% of the square in which it is 
inscribed. 


Quantity Ratio Relative to the Square Approximate Value 


Perimeter 3


2√3
 


≈ 0.8660 


Area √3


2
 


≈ 0.8660 


This symmetrical correspondence is noteworthy. Unlike the circle (where perimeter and 
area ratios differ), the hexagon maintains a consistent ratio across both dimensions. 
This makes it particularly useful in applications where both space coverage and edge 
length matter—such as in honeycombs, crystalline structures, and digital tessellations. 


 


A.4 Future Extension: The Hexagonal Prism 
The next logical extension is to explore the hexagonal prism, a three-dimensional solid 
with a hexagonal base and vertical height. This form is prevalent in engineering and 
structural contexts. Within the GRM model, it could be compared to a cube that fully 
encloses it, similar to how a sphere is analyzed in relation to the cube. The volume ratio 
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of such a prism would potentially lead to a new SVU variant—one suited to hexagonal 
geometry. 


 


A.5 Conclusion 
Adding the regular hexagon to the GRM model demonstrates the model’s flexibility 
beyond circular forms. The consistent ratio of approximately 0.8660 for both perimeter 
and area highlights the hexagon’s geometric elegance and its potential for broader 
application. 


This appendix provides a foundation for further exploration of additional shapes and 
dimensions within the SPU framework. The inclusion of polygonal and polyhedral forms 
reinforces the model’s value as a scalable and intuitive metric system. 
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Appendix B – Related Models and Inspiration 
While the Square Perimeter Unit (SPU) model offers a unique and independently 
developed framework, it is part of a broader movement in geometry that seeks 
alternative approaches to describing shapes, proportions, and circular structures 
without relying on the traditional use of π. The following sources illustrate similar ideas 
or complementary lines of thought: 


1. Hartl, M. (2010). The Tau Manifesto 


A manifesto advocating for the use of the constant τ (tau = 2π) as a more intuitive 
alternative to π. Hartl argues that many mathematical formulas become simpler and 
more elegant when τ is used, particularly in circular geometry. 


Website: www.tauday.com 


2. OSF Preprints (2023). A Circle Without Pi 


This preprint introduces an alternative framework for understanding the circle, 
emphasizing ratio-based relationships without the use of π. The focus is on visual and 
relational properties of circles within fixed geometric containers. 


Link: https://osf.io/preprints/osf/stwxf 


3. Monte Carlo Approaches to Estimating Circle Area 


In probabilistic mathematics, it is possible to estimate the area of a circle without 
directly using π. Monte Carlo simulations—where random points are placed inside a 
square—can statistically approximate π as a ratio of filled space. 


See, for example, related discussions on Reddit Math that explore various methods. 


 


Reflection 


These sources demonstrate that the idea of replacing or reformulating π is not isolated, 
but part of a broader exploration of simplicity, intuition, and measurability in geometry. 
The GRM model aligns with this movement by offering a systematic, visual, and scale-
free approach centered on fixed ratios within standard shapes such as the square and 
the cube. 


The model distinguishes itself by emphasizing didactic clarity, physical reproducibility, 
and dimensional consistency, making it a bridge between classical mathematics and 
modern practical applications. 


 



http://www.tauday.com/

https://osf.io/preprints/osf/stwxf

https://www.reddit.com/r/math/
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Copyright & Licensing 
This white paper and the underlying model are protected under copyright © 2025 M.C.M. 
van Kroonenburgh, MSc. 
This work may be freely used, shared, and cited for educational and non-commercial 
purposes, provided proper attribution is given. 
Commercial reproduction, modification, or use in products, services, or consultancy is 
permitted only with prior written permission. 
For licensing requests, please visit www.inratios.com or contact: info@inratios.com. 
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