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Abstract 

In a world increasingly reliant on digital imaging and artificial intelligence, precise and 
efficient shape recognition plays a crucial role. Whether it pertains to medical image 
analysis, 3D modeling, or object detection in satellite imagery—accurately identifying 
circular or spherical structures remains a persistent challenge. Traditional methods rely 
on π-based calculations to analyze shapes within square or cubic grids. However, this 
approach often results in complexity, rounding errors, and inefficiencies, particularly in 
digital environments where everything is represented in discrete units (pixels, voxels). 

The Geometric Ratio Model (GRM), developed by M.C.M. van Kroonenburgh, MSc, offers 
an alternative perspective: describing shapes based on their relationship to a bounding 
square or cube without the use of irrational numbers. For instance, an inscribed circle 
will always exhibit a ratio of 0.7854 (π/4) relative to the perimeter or area of the square in 
which it resides. This constant enables the recognition of shapes based on fixed ratios, 
making the process simpler, faster, and more robust within digital systems. 

This document presents the GRM model as an innovative, π-free method for geometric 
analysis, emphasizing applications in AI-driven shape recognition. The use case focuses 
on detecting circular structures in medical imaging, where the power of ratio-based 
reasoning leads to more efficient algorithms and improved recognition outcomes. This 
paper aims to establish the groundwork for broader implementation in digital systems, 
spanning domains from education to high-performance computing. 
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Introduction 
In a world where digital systems increasingly make decisions based on visual input, the 
need for reliable and efficient shape recognition is becoming more urgent. From medical 
image analysis to automated quality control, from satellite imagery to augmented 
reality—everywhere, shapes must be detected, classified, and interpreted. 

However, modern geometry still heavily relies on the use of irrational constants such as 
π. This classical approach, while powerful, does not seamlessly align with the 
functioning of digital systems: in raster structures, based on discrete units, within fixed 
frameworks. In these contexts, the use of π leads to rounding errors, inefficiencies, and 
an unnecessarily complex translation between visual shapes and their mathematical 
representation. 

This proposal introduces an alternative that is radically simpler: shape recognition 
based on ratios within a square or cube. No more π, no derivative parameters such as 
radius or r², but a direct relationship between a shape and the space that contains it. In 
essence, geometry is reduced to its core: shape as a ratio. 

The GRM Model as an Alternative to π-Based Calculations 

The Square Perimeter Unit (SPU), Square Area Unit (SAU), and Square Volume Unit (SVU) 
provide a uniform measurement method for shapes within a square or cube. These three 
units form the core of the broader Geometric Ratio Model (GRM), which expresses 
proportions across dimensions using fixed ratios instead of irrational constants. The 
core of the model is that inscribed shapes always maintain a fixed ratio to their bounding 
structure: 

• An inscribed circle always occupies 78.54% of the perimeter of the square in 
which it resides (SPU). 

• Its area covers 78.54% of the square (SAU). 
• An inscribed sphere fills 52.36% of the volume of the encompassing cube (SVU). 

These ratios are constant, scale-independent, and perfectly aligned with raster-based 
digital systems. With this approach, shape recognition is no longer a process of complex 
estimations but a simple check of ratios—exactly how pixels and voxels already operate. 

The GRM model as a new standard for digital shape recognition 

In this proposal, the GRM model is concretely applied within the domain of digital shape 
recognition, with a focus on medical image analysis. Here, recognizing circular or 
spherical structures—such as tumors, blood vessels, or cysts—is critical for accurate 
diagnosis. 
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Using the GRM model, AI algorithms can not only operate faster and more efficiently but 
also classify more accurately. By employing ratio-based numbers instead of π-
dependent estimates, a π-free detection method emerges that better aligns with digital 
image formats and is less prone to rounding errors or scaling issues. 

This case study demonstrates that the GRM model is not only mathematically 
consistent but also practically applicable and socially relevant. 

Problem Statement 
Although digital systems are increasingly sophisticated in processing and interpreting 
image data, the recognition and classification of geometric shapes remain surprisingly 
complex. The core of this problem does not lie in computational power or algorithms but 
in the mathematical framework used to describe these shapes. 

In many applications—such as medical imaging (MRI, CT scans), remote sensing 
(satellite imagery), computer vision, and CAD—round or spherical structures are often 
placed within square or cube-shaped boundaries. Within this digital context, every 
shape is composed of discrete elements: pixels, voxels, grids. Nevertheless, the 
underlying computational models are based on analog, continuous mathematics that 
rely on irrational constants such as π. 

This discrepancy results in several practical challenges: 

• Rounding errors: π cannot be accurately represented in decimal form, which 
introduces errors in calculations of perimeter and area. 

• Complexity: Classical formulas necessitate intermediate steps using r, r², or 
volume factors, derived from discrete data. 

• Inconsistency: Comparing shapes becomes difficult as each calculation is 
context-dependent and does not occur on a uniform scale. 

• Mismatch with digital structures: Pixels and voxels operate based on relative 
positions within a raster, rather than mathematical formulas. 

These issues are not merely theoretical. In AI applications, this leads to reduced 
recognition accuracy, longer processing times, and error-prone classifications. In the 
medical domain, such shortcomings can directly impact diagnoses. Hence, there is a 
need for an alternative mathematical perspective that better aligns with the digital 
reality: scalable, rational, and directly applicable to shapes within square or cube-
shaped boundaries. 

The GRM model provides precisely this alternative. 

  



© 2025 M.C.M. van Kroonenburgh, MSc. This model may be used, shared, and cited for educational and 
non-commercial purposes with proper attribution. Commercial use, reproduction, or modification 
requires prior written permission from the author.    Version 1.0            6 

 
 

Innovative Solution: The GRM Model 
Proportion Instead of Calculation Using Constants 

The GRM model (Geometric Ratio Model) introduces a fundamentally different approach 
to analyzing and recognizing geometric shapes. Instead of calculating with irrational 
constants and derived quantities such as radius or area through π, this model analyzes 
each shape as a proportion relative to the square or cube in which it is inscribed. 

The principle is straightforward: by using the square or cube as a standard reference 
unit, shapes can be described based on fixed, scale-independent proportions. This 
approach is consistent, rational, and directly aligns with the digital reality where shapes 
are nearly always represented within rectangular grids of pixels or voxels. 

Key Proportions within the Model 

• SPU (Square Perimeter Unit): A perfect inscribed circle has a perimeter that is 
78.54% of the perimeter of the square in which it is inscribed. 

• SAU (Square Area Unit): The area of an inscribed circle is likewise 78.54% of the 
area of the square enclosing it. 

• SVU (Square Volume Unit): A sphere perfectly fitting inside a cube occupies 
52.36% of the volume of the cube. 

These proportions derive mathematically from classical formulas but are then simplified 
into fixed coefficients applicable directly in proportional analysis, eliminating the need 
for rounding or conversion of irrational numbers. 

Benefits of This Approach 

• Dimensional Consistency: Perimeter, area, and volume are interpreted within a 
single reference framework. 

• Applicability in Digital Contexts: Seamless integration with raster-based 
structures without requiring abstract or continuous geometrical models. 

• Comparability Between Shapes: By using fixed proportions, shapes can be 
compared easily and objectively. 

The GRM model does not aim to replace traditional geometry but instead provides a 
complementary framework — an alternative conceptual approach that introduces 
simplicity and logic in scenarios where traditional geometry is cumbersome, error-
prone, or computationally inefficient. 

For a detailed derivation of the proportional constants, dimensional consistency, and 
the theoretical foundation of the model, refer to the accompanying whitepaper: 
“Geometric Ratio Model: A New Metric for Proportion, Form, and Dimension” (Van 
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Kroonenburgh, 2025), Available at: www.inratios.com/whitepaper-geometric-ratio-
model . This document includes derivations, formulas, applications in 1D–2D–3D, and a 
mathematical substantiation of the fixed coefficients within the SPU/SAU/SVU 
framework. 

Use Case: Shape Recognition in AI Systems 
In many AI applications, accurately identifying geometrical shapes is a crucial step in 
the analytical pipeline. This is particularly true for medical imaging, where MRI or CT 
scans are utilized to detect structures such as tumors, blood vessels, or cysts. In this 
context, shapes are always represented within a grid of pixels or voxels—a digital 
framework where each structure is enclosed by a square or cube-shaped bounding box. 

Current detection algorithms typically base their shape analysis on estimations of 
edges, radius, and area. To classify a shape as "round," an approximation is made of the 
radius, and through formulas such as 𝐴 =  𝜋𝑟2 or 𝑂 = 2𝜋𝑟, the shape is validated. This 
process requires multiple intermediate steps, is prone to rounding errors, and is often 
error-sensitive when dealing with imperfect or noisy input data. 

SPU/SAU as Accuracy Check 

The GRM model offers a direct and scale-independent solution. Instead of deriving the 
shape itself through complex calculations, it focuses on the proportion between the 
shape and the space it occupies. For instance, if a structure occupies approximately 
78.54% of the area of its enclosing bounding box, it is highly likely to be a circle. This 
straightforward logic enables shape type verification using a single fixed ratio—without 
π, without r, and without derivation. 

This approach provides three immediate advantages: 

• Speed: The AI does not need to make separate estimations for \(r\) or \(\pi\). The 
calculation involves a simple proportional test. 

• Robustness: The analysis is less sensitive to noise or distortion. Even with 
imperfect shapes, the ratio remains approximable. 

• Comparability: Since all shapes are evaluated within the same reference 
framework, a uniform metric for shape classification emerges. 

In practice, this means that the GRM model can be integrated as an additional decision 
layer in existing classification models or serve as a replacement for current shape 
recognition logic in scenarios where speed, simplicity, and reproducibility are 
paramount. 

http://www.inratios.com/whitepaper-geometric-ratio-model
http://www.inratios.com/whitepaper-geometric-ratio-model
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This use case not only demonstrates the applicability of the model but also highlights 
the added value of proportional thinking in a digital world where everything begins within 
squares. 

Technical Implementation 
The implementation of the GRM model within AI systems for image recognition does not 
require a fundamental revision of existing architectures. Instead, the model serves as an 
additional lightweight analytical module capable of verifying geometrical shapes based 
on proportions within their bounding box. 

The basic steps for integration are as follows: 

• Detection of bounding boxes: Utilize an existing object detection algorithm 
(such as YOLO, Faster R-CNN, or U-Net) to isolate potential structures within 
rectangular (2D) or cubic (3D) frames. 

• Calculation of the actual area or volume of the object within the box: This can 
be achieved through segmentation masks or pixel/voxel counting (e.g., via 
binarized segmentation). 

• Computation of the relative ratio in comparison to the box: 

𝑅𝑎𝑡𝑖𝑜 =
𝑜𝑏𝑗𝑒𝑐𝑡′𝑠 𝑎𝑟𝑒𝑎

𝑏𝑜𝑥 𝑠′  𝑎𝑟𝑒𝑎
  𝑜𝑓

𝑜𝑏𝑗𝑒𝑐𝑡′𝑠 𝑣𝑜𝑙𝑢𝑚𝑒

𝑏𝑜𝑥′𝑠 𝑣𝑜𝑙𝑢𝑚𝑒
 

 

Threshold-based evaluation: 

Compare the resulting ratio to known fixed SPU/SAU values: 

• If the ratio is approximately ~0.785, the structure is likely circular. 
• If the ratio is approximately ~0.523, the structure is likely spherical. 
• Other values may indicate ellipses, deformations, or irregular structures. 

This logic can be implemented as a straightforward, scale-independent rule within an 
existing pipeline. Furthermore, the ratio can be added as an extra feature to neural 
network models to enhance classifications or reduce false positives. 

Pseudocode Example (2D): 

#python 

box_area = width * height 

object_area = np.sum(segmentation_mask == 1) 

ratio = object_area / box_area 
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if abs(ratio - 0.7854) < tolerance: 

classification = "circle" 

else: 

classification = "non-circular" 

Integration Advantages 
• Applicable across platforms (Python, C++, Java, etc.) 
• No additional training data is required—the ratios are mathematically derived 

and universally applicable. 
• Independent of scale and resolution, provided the bounding box is accurately 

determined. 

Due to the simplicity of the calculation and the universality of its application, the model 
is highly suitable for both real-time systems (such as edge devices) and in-depth 
analysis on server-level infrastructures. 

Advantages and Added Value 
The GRM model presents an innovative, scalable, and π-free approach to shape 
recognition within digital systems. The strength of this model lies not only in the 
simplicity of its foundational ratios but also in its immediate applicability in contexts 
where speed, reliability, and reproducibility are crucial. 

Specifically, the model offers the following advantages: 

• π-free calculations: By employing fixed proportional numbers instead of 
irrational constants, geometric analysis is simplified, transparent, and less prone 
to errors. 

• Simplification of complex calculations: Traditional approaches require 
intermediate steps involving radius, area, or volume. The SPU/SAU model relies 
solely on relative proportions, drastically reducing computational load. 

• Scale independence: Proportions remain consistent regardless of the absolute 
size of the object. This makes the model particularly suitable for applications 
involving varying resolutions and scale levels. 

• Robustness to imperfections: Even in the presence of deformations or noise, 
the proportional analysis remains functional as long as deviations fall within a 
tolerance range. This increases the reliability of classifications in real-world data. 
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• Rapid integration into existing systems: The model can be seamlessly added as 
an auxiliary analytical tool in existing AI pipelines without requiring retraining of 
models or infrastructure modifications. 

• Uniform comparison between shapes: By analyzing each shape within the 
framework of a square or cube, a standardized metric is established for objective 
and consistent shape comparisons. 

• Broad applicability: The model is deployable across diverse domains, including 
medical imaging, remote sensing, education, architecture, robotics, and 
industrial image recognition. 

Combined, these attributes provide significant added value compared to traditional, π-
based methodologies. The SPU/SAU model aligns seamlessly with the digital reality, 
where geometry is not continuous but discrete, structured, and proportionally 
constructed. 

Overview: Advantages and Limitations in Perspective 

Aspect Added Value of the 
GRM Model 

Limitation Potential Solution 

Mathematical 
Model 

π-free, fixed ratios, 
simpler 
computations 

Less suited for 
exact 
measurements 
outside the square 
model 

Apply only to 
shapes within fixed 
frameworks or 
combine with 
traditional 
geometry when 
necessary 

Scalability Operates at any 
scale: pixel to cube 

Requires accurate 
bounding box 
(otherwise 
distorted 
proportions) 

Integrate with 
reliable object 
detection in 
advance 

Robustness Better tolerates 
deformation and 
imperfection 
through tolerance 
thresholds 

Less applicable to 
irregular shapes 

Define boundary 
conditions and 
employ as an 
additional 
classification layer 

Digital Integration Ideal for raster- and 
voxel-based 
systems 

Less suitable in 
analog or abstract 
measurement 
environments 

Retain as a digital 
analysis tool, not 
as a universal 
measuring 
instrument 

Educational Use Simplifies geometry 
for students, 
visually intuitive 

Requires a shift in 
thinking (away from 
π) 

Introduce via 
instructional 
materials focusing 



© 2025 M.C.M. van Kroonenburgh, MSc. This model may be used, shared, and cited for educational and 
non-commercial purposes with proper attribution. Commercial use, reproduction, or modification 
requires prior written permission from the author.    Version 1.0            11 

 
 

Aspect Added Value of the 
GRM Model 

Limitation Potential Solution 

on proportional 
reasoning 

Computational 
Efficiency 

Lightweight, 
suitable for real-
time systems 

Lacks built-in error 
correction or 
statistical margins 

Combine with AI 
confidence scores 
or neural networks 

Recommendations and Next Steps 
The GRM model offers a rational, scale-independent, and computationally efficient 
alternative for shape recognition within digital systems. Its mathematical simplicity and 
direct applicability make it particularly suitable for environments where speed, 
repeatability, and consistency are paramount. To further leverage the potential of this 
model and validate its practical value, the following next steps are recommended: 

1. Development of a Proof-of-Concept 

Design and implementation of a simple AI pipeline integrating the GRM model as an 
analytical module. This could be applied within an existing system for medical image 
analysis, such as supporting the identification of circular structures (e.g., cysts or 
tumors) through proportional analysis. 

2. Validation in Realistic Datasets 

Application of the model to existing image data (preferably open medical or industrial 
datasets) to compare performance metrics such as recognition accuracy, processing 
speed, and margin of error against traditional approaches. Explicit testing for robustness 
under noise, distortion, and scale variations should be conducted. 

3. Interdisciplinary Collaboration 

Seek collaboration with experts in AI, computer vision, medical technology, and 
didactics to further optimize the model for various domains. Educational institutions 
could also be involved to evaluate the model's pedagogical value for curriculum 
integration. 

4. Publication and Dissemination 

Publish the underlying white paper and proof-of-concept results in relevant scientific 
journals, conferences, or mathematical innovation platforms. Concurrently, 
visualizations and explanatory materials for non-mathematical audiences should be 
developed. 

5. Exploration of Additional Applications 
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Investigate broader areas of application, such as remote sensing, robotics, object 
classification in autonomous systems, and shape recognition in industrial quality 
control. Expanding the model to accommodate other basic shapes (e.g., hexagons or 
ellipses) should also be considered. 

By pursuing these steps, a solid foundation can be established for further development, 
validation, and application of the GRM model in both practical and academic contexts. 
The model not only provides an alternative to π-based calculations but also introduces a 
novel perspective on geometry in the digital age. 

Sources 
The GRM model is an original development by the author, based on classical 
geometrical principles and derivations of ratios within inscribed shapes in squares and 
cubes. This proposal does not utilize direct external data or empirical studies but 
instead draws on relevant literature and conceptual frameworks that align with the 
foundational ideas of the model. 

At present, the model is in its conceptual phase and has not yet been tested or validated 
within an operational system. This publication serves as a starting point for further 
implementation, validation, and development. 

The following sources and related concepts are key for deeper theoretical understanding 
and context: 

• van Kroonenburgh, M.C.M. (2025). The Square Perimeter Unit (SPU) Model: A 
New Metric for Ratio, Shape, and Dimension. 

• Hartl, M. (2010). The Tau Manifesto.  
Describes the mathematical and didactic advantages of using the constant τ (tau 
= 2π) instead of π, advocating simpler formulations in circular geometry.  
Website: www.tauday.com 

• OSF Preprints (2023). A Circle Without Pi.  
Introduces an alternative approach to the circle via ratios without the use of π. 
Link: https://osf.io/preprints/osf/stwxf 

• Monte Carlo Approaches to Circle Area.  
Various publications and discussions demonstrate that it is possible to 
approximate the area of a circle via probabilistic methods (such as Monte Carlo 
simulations), without direct reliance on π. See relevant discussions on Reddit 
Math. 

http://www.tauday.com/
https://osf.io/preprints/osf/stwxf
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These references illustrate the growing international interest in alternative forms of 
geometric reasoning and π-free approaches. The SPU/SAU model aligns closely with this 
trend yet distinguishes itself by combining ratio-based thinking with digital grid 
structures and by offering a consistent system across 1D, 2D, and 3D dimensions. 

The objective of this proposal is to open the model for further development and practical 
application. To this end, the search for a suitable implementation context is ongoing—
preferably within fields where shape recognition in digital image data plays a central 
role, such as medical image analysis, remote sensing, or industrial quality control. 
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