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Abstract 
This paper presents the Geometric Ratio Model (GRM)—a digital measurement method that 
uses pixel counting as the core mechanism for shape recognition and calibration. By calculating 
the proportion of pixels occupied by a shape within a square or cube, GRM defines fixed ratio 
standards (e.g., 0.7854 for a circle) that replace traditional π-based geometry. This enables 
resolution-independent, transparent, and highly efficient classification in rasterized systems. 
GRM transforms raw pixel data into a reproducible unit of geometric identity, offering practical 
applications across artificial intelligence, medical imaging, digital education, and design 
validation. For the theoretical foundation of the GRM system and its dimensional consistency, 
see: 
M.C.M. van Kroonenburgh (2025). The Geometric Ratio Model (GRM): A New Metric for 
Proportion, Shape, and Dimension. Whitepaper v2.0. 
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1. Introduction 

In today’s increasingly visual digital world, systems across industries depend on precise 
shape interpretation. Whether analyzing medical scans, training AI for object 
recognition, or developing educational tools for geometry, accurate shape assessment 
is critical. Yet, most digital platforms rely on classical geometrical principles based on 
irrational constants like π, which do not align well with the discrete nature of pixel-based 
imaging. 

The Geometric Ratio Model (GRM) offers a groundbreaking alternative. Rather than 
calculating geometric properties using continuous, analog models, GRM introduces 
fixed proportional standards—such as 78.54% for circles and 52.36% for spheres—
anchored in the geometry of a square or cube. These constants correspond with the 
pixel or voxel occupancy of perfectly inscribed shapes. 

Shape verification and classification through pixel-counting 

This new approach lays the foundation for a new digital metric: shape verification and 
classification through pixel-counting. By comparing the number of pixels a shape 
occupies within a known bounding square or cube, digital systems can instantly validate 
its proportional identity—bypassing π, radius, or perimeter approximations altogether. 

This document proposes a practical application of this principle. By leveraging the GRM 
model to create a pixel-ratio-based tool or module, we introduce a fast, intuitive, and 
mathematically robust framework for shape recognition and digital calibration. This 
innovation stands to benefit fields from education and diagnostics to CAD systems and 
artificial intelligence. 

2. Problem statement  
Modern digital systems rely heavily on shape recognition algorithms to analyze visual 
data. However, these systems typically use mathematical frameworks rooted in analog 
geometry—most notably, formulas that depend on π. In practice, this leads to several 
limitations: 

• Rounding Errors: Since π is irrational, it must be approximated numerically, 
causing minor but accumulating inaccuracies—especially in low-resolution or 
grid-based environments. 

• Complex Computation: Calculating geometric features like radius, 
circumference, and area often requires multiple transformation steps, increasing 
processing time and introducing fragility. 
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• Lack of Uniform Metrics: Different shapes are evaluated using different 
geometric heuristics, which limits comparability across datasets or systems. 

• Mismatch with Raster Structures: Digital environments operate on pixels and 
voxels—discrete units—whereas classical geometry assumes continuous space. 

These discrepancies become especially problematic in use cases like medical imaging, 
where precise identification of circular or spherical structures (e.g., cysts, tumors) is 
crucial. Without a consistent, pixel-native metric, systems rely on shape estimators that 
are sensitive to distortion, scale variance, and segmentation noise. 

The missing link: A practical metric for digital geometry 

The need is clear: a scalable, robust, and computationally efficient method for 
recognizing and validating shapes that aligns with the discrete nature of digital images. 
What is missing is a practical, hands-on instrument—an interpretable and 
programmable metric that directly links pixel occupancy to geometrical identity. The 
GRM-based pixel ratio method provides exactly that: a simple, fast, and universally 
applicable metric that transforms digital images into measurable proportional space. 

 

3. GRM as a digital metric 

The Geometric Ratio Model (GRM) introduces a fundamental shift in how geometric 
shapes are interpreted in digital environments. Instead of approximating continuous 
features like radius, area, or volume, the GRM approach evaluates how much of a 
square or cube is filled by a shape—as a fixed, proportion-based identity. 

This is not merely a simplification; it is a redefinition of measurement within raster 
structures. Every pixel becomes a unit of evidence. The more closely a shape fills a 
known percentage of its bounding frame, the more confidently we can identify its 
geometrical class. 

Core ratios in the GRM system 

• An inscribed circle consistently occupies ~78.54% of the area or perimeter of its 
square → defined as 0.7854 SPU/SAU. 

• An inscribed sphere consistently occupies ~52.36% of the cube's volume → 
defined as 0.5236 SVU. 

These constants—derived from classical formulas yet simplified for digital application—
serve as standard thresholds in a new metric system. Any object whose pixel ratio 
approximates one of these values can be classified accordingly. 
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From calculation to verification 
Instead of reconstructing geometrical shapes through estimates, the GRM model allows 
digital systems to verify shape identity through a simple ratio: 

𝐺𝑅𝑀 𝑅𝑎𝑡𝑖𝑜 =  
𝑆ℎ𝑎𝑝𝑒 𝑃𝑖𝑥𝑒𝑙𝑠

𝐵𝑜𝑢𝑑𝑖𝑛𝑔 𝐵𝑜𝑥 𝑃𝑖𝑥𝑒𝑙𝑠
 

This pixel-ratio can be calculated immediately after segmentation, with no further 
derivation needed. It is scale-independent, unitless, and consistent across 
dimensions—providing a reliable foundation for digital shape interpretation. 

 

3.1 Interpreting deviations and edge cases 
While the GRM model defines exact ratios for ideal geometric shapes—such as 0.7854 
for circles and 0.5236 for spheres—real-world data rarely presents perfect forms. In 
practice, detected shapes may deviate from these canonical values due to irregularities, 
distortions, or segmentation noise. 

Understanding deviations 
A ratio of 0.7854 implies a perfect circle inscribed in a square. But what if a measured 
ratio is 0.72, or 0.67? Such deviations invite deeper interpretation: 

• Slight deviations (e.g., 0.76–0.78) may indicate a near-circular shape with minor 
imperfections or noise in the boundary. 

• Moderate deviations (e.g., 0.65–0.75) could suggest an elliptical form or partial 
occlusion within the bounding box. 

• Larger deviations (e.g., <0.60) typically imply irregular, fragmented, or non-
circular shapes. 

Rather than treating the ratio as binary (match/no match), it can be interpreted as a 
confidence score, where proximity to canonical GRM values indicates stronger shape 
identity. 

Classification thresholds 
To formalize this, a system may define thresholds, for example: 

Shape Expected Ratio Tolerance Range 

Circle (2D) 0.7854 ± 0.03 (0.755–0.815) 

Sphere (3D) 0.5236 ± 0.03 (0.493–0.553) 

Hexagon (2D) 0.8660 ± 0.03 (0.836–0.896) 
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These ranges can be refined empirically based on use case, resolution, and application 
domain. They transform the GRM metric into a classification layer rather than a rigid 
filter. 

Implications for expansion 
This principle also enables the GRM model to support additional shapes—such as 
ellipses, hexagons, or composite structures—by defining their expected pixel ratios 
within a bounding square or cube. For instance, a regular hexagon inscribed in a square 
has a fixed area and perimeter ratio of ~0.8660, making it a candidate for GRM-based 
identification using the same proportional logic. 

In this way, the GRM metric evolves from a simple check into a flexible recognition 
framework, capable of assessing proportional identity under real-world conditions. 

4. Pixel ratio implementation architecture 
To implement the GRM-based pixel ratio method in practice, a clear modular 
architecture is essential. This section outlines the recommended processing pipeline—
from raw image input to shape classification based on GRM thresholds. The system can 
be built as a standalone tool, integrated module, or API endpoint depending on the 
application domain. 

4.1 Input and preprocessing 
The process begins with a digital raster image in 2D (bitmap, PNG, segmented MRI slice) 
or 3D (voxel grid, DICOM scan, point cloud). Key preprocessing steps include: 

• Segmentation: isolate the object of interest (e.g., via thresholding, U-Net, or 
manual mask). 

• Bounding Box Extraction: compute the smallest axis-aligned square or cube 
that fully contains the object. 

• Pixel Count Extraction: 

o Count the total number of pixels or voxels within the bounding box. 

o Count the number of shape pixels (value = 1) within the same region. 

4.2 Ratio computation and comparison 
Once both pixel counts are known, compute the ratio: 

𝐺𝑅𝑀 𝑅𝑎𝑡𝑖𝑜 =  
𝑆ℎ𝑎𝑝𝑒 𝑃𝑖𝑥𝑒𝑙𝑠

𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝐵𝑜𝑥 𝑃𝑖𝑥𝑒𝑙𝑠
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Then, compare this result to known GRM reference values: 

Shape GRM Ratio Tolerance 

Circle 0.7854 ± 0.03 

Sphere 0.5236 ± 0.03 

Hexagon 0.8660 ± 0.03 

If the ratio falls within the range, the object can be classified as the corresponding 
shape. 

4.3 Output and decision layer 
Based on the computed ratio, the system produces: 

• Shape label (e.g., “circle”, “non-circular”). 

• Confidence score based on distance from the GRM value. 

• Deviation index for diagnostic or training purposes. 

• Optional: classification heatmap or bounding overlay for feedback. 

This architecture enables GRM logic to operate as an interpretable decision layer—
either standalone or integrated into AI pipelines as a post-processing validator. 

4.4 Integration with AI pipelines 
The GRM ratio module can function as a standalone verification tool or as part of a larger 
AI workflow. Common integration points include: 

• Post-segmentation validation: After neural networks (e.g., U-Net, Mask R-CNN) 
predict a segmentation mask, the GRM module verifies if the detected shape 
conforms to expected geometrical proportions. 

• False positive filtering: In classification or detection models, shapes that do not 
meet GRM ratio thresholds can be filtered or flagged for manual review. 

• Multi-stage decision systems: GRM logic can act as a lightweight early-stage 
classifier or confidence booster for more complex ensemble models. 

This modularity makes the GRM method especially useful in edge computing, low-power 
applications, or environments where explainability is required. 

  



© 2025 M.C.M. van Kroonenburgh, MSc. This model may be used, shared, and cited for educational and 
non-commercial purposes with proper attribution. Commercial use, reproduction, or modification 
requires prior written permission from the author.    Version 1.1  9 
 

4.5 Performance and scalability considerations 
The GRM pixel ratio computation is highly efficient, as it requires only: 

• A bounding box calculation (typically O(n) over segmentation mask), 

• Two pixel sums (simple binary count operations), 

• One ratio calculation and threshold comparison. 

This minimal complexity enables the method to run: 

• In real time on edge devices (e.g., Raspberry Pi, NVIDIA Jetson), 

• As a batch processor over large image datasets, 

• Embedded within graphical user interfaces for live feedback in educational or 
medical tools. 

Moreover, since GRM ratios are scale-independent and unitless, they generalize across 
resolutions and do not require retraining, retracking, or parameter tuning—offering 
exceptional portability. 

5. Added value 
The GRM pixel ratio method introduces a number of key advantages compared to 
traditional shape analysis techniques. Its strength lies in combining mathematical 
simplicity with digital-native compatibility, offering value in both theoretical and 
practical contexts. 

5.1 π-Free geometry in digital systems 
By replacing irrational constants such as π with fixed proportional values (e.g., 0.7854 
for circles), GRM enables geometry that is computable, transparent, and error-resistant. 
This is especially important in environments where floating-point precision or 
computational resources are limited. 

5.2 Universally scalable and unitless 
The method operates entirely on relative proportions, not absolute units. As a result, it 
functions seamlessly across: 

• Resolutions (low-res to HD and beyond), 

• Scales (from micro-imaging to satellite data), 

• Dimensions (2D pixel maps to 3D voxel grids). 
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This scale-invariance makes the GRM model applicable in almost any digital imaging 
system. 

Important clarification on the radius: 
In the GRM model, the perimeter ratio of a circle inscribed in a square is fixed at 0.7854 
SPU (Square Perimeter Units). However, this ratio does not define or imply the radius of 
the circle. A common misconception is that the radius can be derived from the SPU 
value itself. This is incorrect. The radius is a separate geometric property and is not 
inferred from the 0.7854 ratio. In a square with a perimeter of 1 SPU (i.e., side length s = 
0.25), the radius of a perfectly inscribed circle is exactly 0.1250 SPU, because it equals 
half the side length of the square, not a fraction of its perimeter. Therefore, any pixel-
based system applying GRM principles must treat the radius and the perimeter ratio as 
distinct, non-interchangeable quantities. Misinterpreting this relationship can lead to 
geometric inconsistencies or misclassification in shape analysis. 

Note: The SPU value describes the relative perimeter of the shape within the square. It must not be used 
to infer length-based values such as radius or diameter. 

For a complete derivation of the radius within the GRM framework, refer to the 
whitepaper: “The Role of the Radius in the Geometric Ratio Model (GRM)” (2025). 
This publication formally defines the radius of a perfectly inscribed circle as r = 0.1250 
SPU, based on a square with a perimeter of 1 SPU (implying side length s = 0.25). The 
value is not an estimate, but a fixed, dimensionally consistent quantity derived from the 
structural logic of GRM-conforming shapes. 

Download: The role of the radius in GRM 

Deriving the radius from square perimeter (SPU = 1): 

In the GRM model, the radius of a perfectly inscribed circle is derived from the known 
perimeter of the square rather than from the circle's perimeter. 

When the square has a perimeter of 1 SPU, each side of the square is: 

𝑠 =  
1

4
= 0.25 

Since the circle is perfectly inscribed, its diameter equals the side length of the square: 

𝑑 = 𝑠 = 0.25 

The radius is therefore: 

𝑟 =  
𝑑

2
=  

0.25

2
= 0.1250 

https://inratios.com/whitepaper-grm-series-part-ii/
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This results in the fixed radius value of r = 0.1250 SPU, which is valid across all scales as 
long as the enclosing square conforms to the GRM definition (perimeter = 1 SPU, with 
the circle touching all four sides). 

This relationship holds regardless of the resolution or unit system and is especially 
useful in pixel-based systems where each dimension is derived from container logic. 

5.3 Low computational load 
GRM-based analysis requires only basic operations: pixel counts and a ratio. No 
trigonometry, square roots, or high-order polynomial fitting is needed. This makes the 
approach ideal for real-time systems, edge devices, and integration in lightweight 
applications. 

5.4 Robustness to noise and deformation 
As long as a shape approximately fills its bounding box according to a known ratio, it can 
be reliably identified—even in noisy, distorted, or partially segmented data. The fixed 
thresholds and tolerances allow for fuzzy matching while maintaining classification 
confidence. 

5.5 Educational and didactic strength 
The GRM approach promotes geometric reasoning based on visual intuition and ratio 
logic rather than memorization of formulas. It is ideally suited for use in STEAM 
education, digital tools for geometry learning, and interactive platforms that emphasize 
spatial understanding. 

5.6 Versatile integration 
From AI pipelines to CAD systems and medical imaging tools, the GRM method can be 
embedded with minimal configuration. Its modularity and independence from external 
parameters make it easy to adopt across software environments. 

5.7 Pixels as direct measurement units 
In contrast to traditional geometry, which relies on inferred quantities such as radius or 
perimeter, the GRM method uses pixel count as a direct, digital-native measurement 
unit. Every pixel becomes evidence of presence, and every shape is evaluated by how 
much of the total pixel space it occupies. 

This radically simplifies the path from image to interpretation: 

• No assumptions about continuity or smoothness are required. 

• No conversion between physical and geometric units is needed. 
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• No dependence on precision floating-point math. 

In doing so, GRM aligns with the discrete nature of modern data, where shapes exist not 
as theoretical curves, but as clusters of counted, quantifiable pixels or voxels. It 
transforms geometry from formula-driven abstraction into a concrete, countable 
system. 

A practical example: From pixel count to SPU equivalent 

In a practical setting, for instance, a detected shape that occupies 7,854 pixels within a 
bounding square of 10,000 pixels (e.g., 100×100) yields a GRM ratio of 0.7854. 
This value matches the SPU (Square Perimeter Unit) standard for an inscribed circle 
within the GRM framework. 
As such, the ratio does not merely serve as a classification threshold—it becomes a 
direct, reproducible, and resolution-independent measurement unit, functioning as a 
digital analogue to the SPU (Square Perimeter Unit) in rasterized geometry. 

6. Comparison with classical approach 
The GRM model offers a fundamentally different perspective compared to classical 
Euclidean geometry, especially when applied within digital environments. Below is a 
direct comparison between traditional π-based methods and the GRM pixel-ratio 
approach, followed by a reflection on what this shift means for digital systems. 

Aspect Classical Geometry GRM Pixel Ratio Approach 

Mathematical 
Basis 

Irrational constants (e.g., π) Fixed ratios (e.g., 0.7854 for 
circles) 

Input Parameters Radius, perimeter, area Pixel count within bounding 
square/cube 

Computational 
Load 

Moderate to high (floating-
point math) 

Low (counts and ratio 
comparison) 

Error Sensitivity Cumulative rounding, scale 
issues 

Minimal; pixel-native, robust 

Data Structure Fit Analog/continuous space Discrete, raster-based 
systems 

Scalability Resolution- and unit-
dependent 

Scale-independent, unitless 

Interpretability Abstract calculations Concrete visual proportions 
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Aspect Classical Geometry GRM Pixel Ratio Approach 

Shape 
Recognition 

Indirect (requires 
reconstruction) 

Direct (ratio = identity + 
confidence) 

 

6.1 Implications of the shift 
Switching from classical π-based reasoning to GRM's ratio-based logic transforms the 
way we interact with geometry in digital environments. Rather than relying on theoretical 
properties that must be reconstructed or estimated from imperfect data, GRM enables: 

 

• Direct classification based on proportion alone; 

• System-neutral measurement across platforms, resolutions, and domains; 

• New forms of verification based on relative truth, not absolute formulae. 

This redefinition not only simplifies geometric reasoning but also makes it more 
compatible with modern digital infrastructure, where everything—from images to neural 
networks—is composed of discrete, countable units. 

6.2 Redefining measurement through pixel counting 
Perhaps the most fundamental difference lies in how measurement is defined. 
In classical geometry, quantities like area or circumference must be inferred from shape 
approximations, requiring radius estimation and floating-point calculations. 
In contrast, GRM operates by directly counting what is actually there—pixels. This 
makes the method not only more intuitive and explainable, but also perfectly aligned 
with the structure of digital data. 

7. Future directions 
The GRM pixel ratio method opens the door to a wide range of future developments, 
both theoretical and applied. This chapter outlines key areas for exploration, refinement, 
and integration. 

7.1 Expanding the shape catalog 

While the GRM model currently defines fixed ratios for circles, spheres, and hexagons, 
future versions may include: 

• Ellipses and ellipsoids (ratio ranges), 

• Irregular but symmetrical forms (e.g., rounded rectangles), 
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• Compound structures (e.g., clusters or repeating units), 

• 4D and n-dimensional extensions (VE-n framework). 

This expansion requires precise calibration and empirical validation but holds great 
promise for broader classification capability. 

7.2 Tuning tolerances and confidence scoring 
Further research is needed to: 

• Define robust tolerance ranges for various resolutions and image conditions, 

• Integrate ratio deviation as a confidence metric, 

• Adapt thresholds dynamically based on system feedback or domain-specific 
requirements. 

Such enhancements will make the method even more resilient and adaptive in real-
world applications. 

7.3 Open tooling and API integration 
To make the GRM method widely usable, the development of open-source tooling is a 
logical next step. This includes: 

• GRM pixel ratio libraries (Python, C++, WebAssembly), 

• A command-line validator and GUI prototype, 

• API modules for integration into AI pipelines, image processing suites, or 
educational platforms. 

7.4 Real-world use case pilots 
The next phase includes piloting the GRM method in: 

• Medical image validation tools (e.g., circle- and sphere-like structure detection), 

• Digital geometry education software, 

• Automated quality control systems in manufacturing (form-fitting and tolerance 
checks), 

• Embedded vision applications (e.g., drones, sensors, wearables). 

These pilot cases will demonstrate the model’s adaptability, value, and potential 
societal impact. 
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7.5 The foundational role of pixel counting 
At the heart of all these directions remains a simple yet powerful principle: counting 
pixels. 
It is this shift — from inferred measurements to direct digital evidence — that makes the 
GRM method scalable, explainable, and ready for integration across disciplines. 
Whether in medical diagnostics, AI, or design education, pixel-based proportional logic 
creates a universal foundation for shape understanding in the digital age. 

7.6 Practical tolerance logic for GRM-based classification 
In real-world applications, perfect geometric forms are rare. Shapes may appear 
distorted, segmented, rotated, or blurred—especially in low-resolution, compressed, or 
noisy images. Even small deviations in edge detection or alignment can affect the 
resulting pixel ratio. 

To account for this, the GRM framework supports confidence-based classification using 
tolerance ranges. Each canonical GRM ratio (e.g., 0.7854 for a circle) can be evaluated 
not as a strict match, but as a target within a flexible interval. 

For example: 

• Circle (SPU): 0.7854 ± 0.03 → accepted range: 0.755–0.815 

• Hexagon (SAU): 0.8660 ± 0.02 → accepted range: 0.846–0.886 

• Triangle (SAU): 0.4330 ± 0.02 → accepted range: 0.413–0.453 

These ranges allow the system to tolerate minor geometric inconsistencies while 
maintaining a high level of classification confidence. 

Beyond the number: Structural conformity 

Tolerance margins should be used in combination with structural checks to avoid 
misclassification. A shape may numerically resemble a circle (ratio ≈ 0.785), but if it 
lacks enclosure symmetry or radial continuity, it may be better interpreted as an ellipse 
or distorted form. 

Key structural criteria include: 

• Symmetry: Does the shape exhibit mirror symmetry across its axes? 

• Center alignment: Is the shape centered in the bounding square? 

• Edge conformity: Does the shape touch or align with the expected edges? 
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Scoring and threshold strategies 

Classification systems can adopt either a binary threshold (match/no match) or a 
graded scoring model, where confidence is calculated based on: 

• Distance from the canonical GRM ratio 

• Number and severity of structural mismatches 

• Resolution context and segmentation reliability 

This transforms GRM classification from a rigid rule set into a resilient, real-world-ready 
evaluation tool, especially suited for noisy data, AI post-processing, or medical 
diagnostics. 

7.7 Confidence scoring and weighting schemes 
While tolerance margins offer a basic way to determine whether a pixel ratio falls within 
an acceptable range, more nuanced applications benefit from graded confidence 
scoring. Rather than making binary decisions (match or no match), the GRM framework 
can assign a confidence level to each shape detection, depending on how closely it 
approximates a canonical GRM ratio. 

This enables systems to: 

• Prioritize high-confidence detections, 

• Filter ambiguous cases for review or fallback, 

• Train models to weigh geometric likelihoods adaptively. 

Scoring based on ratio deviation 

A basic confidence score C can be computed as: 

𝐶 = 1 
|𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑟𝐺𝑅𝑀|

𝑡
 

where: 

• 𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑is the observed pixel ratio, 

• 𝑟𝐺𝑅𝑀 is the canonical GRM ratio for the expected shape, 

• 𝑡 is the tolerance range (e.g., ±0.03), and 

• 𝐶 is clamped between 0 (outside tolerance) and 1 (exact match). 
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For example, a shape with a measured ratio of 0.772 compared to the GRM circle ratio 
(0.7854), within a ±0.03 tolerance, yields: 

𝐶 = 1 −  
|0.772 − 0.7854|

0.03
 ≈ 0.55 

This score can be interpreted or thresholded based on application needs (e.g., accept ≥ 
0.8, review 0.6–0.8, reject < 0.6). 

Weighted structural scoring 

Ratio closeness is only part of the story. A full GRM-conformity score can also include 
structural weights, such as: 

• Symmetry alignment (vertical, horizontal): +0.2 

• Bounding box centering: +0.1 

• Edge conformity (touching all 4 sides): +0.2 

These can be added to or multiplied with the base ratio score to produce a composite 
confidence index. 

Example composite score: 

• Ratio score: 0.80 

• Symmetry: +0.2 

• Center alignment: +0.1 

• Edge conformity: +0.2 
→ Total score = 0.80 + 0.5 = 1.3 (normalized to scale or used comparatively) 

Practical Use 

Confidence scoring enables: 

• Soft classification in AI/ML pipelines, 

• Prioritization in human-in-the-loop systems, 

• Statistical aggregation over large datasets, 

• Explainability for users and auditors. 

In this way, the GRM becomes not just a metric, but a probabilistic decision system, 
ready for integration in modern shape analysis and interpretation. 
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8. Limitations and considerations 
While the GRM pixel ratio model offers clear advantages in terms of simplicity, 
robustness, and computational efficiency, it is important to acknowledge its current 
limitations—most of which stem directly from its core mechanism: pixel counting. 
As a method based on measurable pixel occupancy within bounding shapes, GRM is 
inherently tied to the quality of digital segmentation, resolution, and geometric clarity. 

1. Dependence on Clean Segmentation 
The accuracy of GRM classification depends on well-defined object boundaries. 
If segmentation is poor—due to noise, occlusion, or algorithmic error—the 
resulting pixel count may deviate significantly, leading to misclassification or 
uncertainty. 

2. Shape Ambiguity Near Ratio Overlaps 
Certain shapes (e.g., ellipses, irregular blobs, or rotated hexagons) may produce 
pixel ratios that fall within the tolerance range of multiple GRM reference shapes. 
Without additional contextual information, these edge cases may remain 
ambiguous. 

3. No Internal Structure Analysis 
GRM focuses purely on outer pixel coverage. It does not assess internal texture, 
symmetry, or center alignment—features that may be important in advanced 
medical, industrial, or artistic applications. 

4. Dimensional Assumptions 
The current GRM ratios assume ideal inscribed shapes in square or cubic 
bounding frames. In non-orthogonal, skewed, or rotated contexts, preprocessing 
must first normalize orientation, which adds complexity. 

5. Not a Replacement for Full Geometry 
GRM is designed as a complementary method, not a replacement for full 
analytical geometry. It excels in situations where relative proportion is more 
relevant than precise dimensional reconstruction. In CAD or engineering 
validation, GRM can guide, but not fully replace, parametric modeling. 

9. Application scenarios 
The GRM model’s pixel-ratio approach can be applied across a wide range of domains. 
At the core of each scenario lies a shared principle: measuring shape identity through 
pixel counting within a defined frame. 
This direct, resolution-independent metric enables geometric reasoning that is both 
lightweight and robust—whether used in education, diagnostics, AI, or engineering.  
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9.1 Medical imaging and diagnostics 
Many medical imaging systems (e.g., MRI, CT, ultrasound) reveal circular or spherical 
features such as cysts, lesions, or anatomical cavities. GRM can be used to: 

• Validate whether a detected shape conforms to known biological proportions; 

• Provide early classification of circular anomalies based on pixel count; 

• Support radiologists with a proportional, resolution-independent metric. 

9.2 Geometric education tools 
In educational environments, GRM allows learners to: 

• Visually explore the concept of ratio using pixelated shapes; 

• Build intuition for π and proportionality without abstract formulas; 

• Interactively classify shapes based on how much of a square or cube they 
occupy. 

This supports STEAM learning through hands-on geometry with immediate visual 
feedback. 

9.3 AI post-processing validation 
In AI-based segmentation pipelines, GRM acts as a lightweight decision layer: 

• Confirm whether AI-generated masks actually represent canonical shapes; 

• Reject outliers that deviate significantly from expected GRM ratios; 

• Reduce false positives by enforcing geometric plausibility. 

This can be applied in image classification, medical AI, satellite detection, and quality 
control. 

9.4 Design and manufacturing 
In product design and manufacturing, geometric accuracy is vital. GRM can: 

• Check whether components (e.g., caps, connectors) conform to expected 
circular profiles; 

• Validate printed or scanned objects in real time via vision systems; 

• Serve as a geometric integrity check in automated production pipelines. 
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9.5 Embedded and edge applications 
Because GRM requires only basic counting operations, it is ideal for: 

• Embedded devices (e.g., Arduino, Raspberry Pi, Jetson Nano), 

• On-device processing in drones, wearables, and smart cameras, 

• Contexts with limited processing power but critical shape logic. 

10. Conclusion 
The Geometric Ratio Model introduces a new paradigm in digital geometry: one that 
abandons classical reliance on irrational constants like π in favor of fixed proportional 
values derived from pixel counts. By measuring how much of a square or cube a shape 
occupies, GRM enables a system of reasoning that is: 

• Digital-native: rooted in the discrete structure of rasterized data; 

• Scale-invariant: applicable at any resolution without recalibration; 

• Transparent: based on countable quantities rather than abstract formulas; 

• Modular: suitable for standalone tools or integration in AI pipelines. 

At the heart of this method lies a simple, universal action: counting pixels within a 
defined frame. Whether used to validate medical imaging, educate students, classify AI-
detected objects, or verify design tolerances, GRM provides a lightweight and reliable 
metric for shape identity in a pixelated world. 

As this proposal has shown, GRM is not just a theoretical alternative to π—it is a 
practical instrument for geometric reasoning across fields, systems, and dimensions. By 
redefining measurement in terms of occupancy and ratio, the GRM method aligns 
perfectly with the evolving needs of digital analysis. 

This is not merely a new calculation. It is a new way of seeing shapes. 
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10.1 The pixel as a unit of geometry 
In a world defined by digital resolution, the most truthful measure is not inferred, but 
counted. 
The pixel is not just a unit of display—it is a unit of geometry. 
And by counting it, GRM redefines what it means to measure a shape. 

 

 

To support and extend this approach, future versions of this proposal will include illustrative figures, 
worked examples, and functional software prototypes. These additions aim to enhance clarity, 
accessibility, and real-world applicability of the GRM pixel-ratio method. 
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